Steve Thackery says:
[Microchip Application Note AN542 doesn't work]*No* disrespect to the guys who wrote it, but it doesn't work.
Over the last several months I've been developing a product for my employer which uses a fast fourier transform as part of its functionality. The product is based upon a 17C44, by the way.
I was foolish enough to plan my timescales assuming that the Microchip FFT would be pretty well "plug and play". After all, I do tend to trust the stuff they publish. How wrong I was!
I won't bore you with the details, but Microchip's FFT is seriously defective. I can only guess that it didn't receive much testing. In fact, reading between the lines in AN542 it becomes clear that it was primarily written as a *benchmarking* exercise rather than a reliable FFT module for use in our projects.
Basically, if you test it with the waveform shown in the AN, it works perfectly. I should have been suspicous, even so. The waveform shown is of very low frequency, and has a whole number of cycles in the sampling window. Alter that frequency by even a small amount, so that there isn't a whole number of cycles in the window and the whole thing goes haywire! It generates artefacts in the FFT output all over the place, both above and below the "real" frequency. Similarly, test it at higher frequencies with sine or square waves, and you get a complete spectrum of rubbish at the output.
Incidentally, it wasn't made clear in the AN that permissible input range of values is between 0 and 3FFF. In other words, you need to DC-shift your sound sample so its centred around 1FFF, and adjust its gain. That caught us out for a couple of days!
We assumed it must be something we were doing wrong and spent ages poring over the AN to see if we were doing something stupid. We also tried working through the code itself, but it is almost inpenetrable. We tried everything, including using very small amplitude signals, but to no avail. The output is rubbish *except* with very low frequency square waves with a whole number of cycles in the window.
I can only imagine that there is a scaling problem somewhere in the maths. It looks like there is some sort of overflow or fold-back going on.
This cost me two months of development time and made me very unpopular with my employer and customer!
In the end we gave up and looked elsewhere. This is where Robert Lacoste comes into the picture. He developed his own FFT module from scratch and incorporated it into his PIC'Spectrum product. I contacted him and asked if he would be willing to let us use his FFT module - for prototyping and test purposes only - in our own product. He was willing and incredibly helpful, answering all our questions with clarity.
It took us two days to unplug the Microchip FFT module and plug in the Lacoste module. Here's what happened. It worked PERFECTLY! The output is classic, text-book perfect under all circumstances. Furthermore, it runs at least ten times as fast as the Microchip module.
Let me state publicly my most grateful thanks to Robert. If you need to include an FFT in any of your products, contact him on robert_lacoste@yahoo.fr He allowed us free use in our prototypes, and suggested a very reasonable royalty on our production models. I expect he might extend a similar deal to others.
In summary, then: BEWARE the Microchip FFT, and THANK YOU Robert Lacoste!
See also:
;============================================================================
; PROJECT : PIC'SPECTRUM
;
; FILE : PICSPECT.ASM
;
; VERSION : 1.0
;
; DESCRIPTION :
;
; PIC'SCOPE digital audio spectrum analyser - Main source file
;
; This project is a complete audio spectrum analyser with output on a
; standard VGA display, done entirely with a PIC17C756 microcontroler.
;
; The controler is in charge of :
; - ADC acquisition of the incoming signal
; - Fast Fourier Transform of the signal
; - Power calculation and if required logarithmic scaling
; - Video generation entirely in software
; of course in real time.
;
; Developped on MICROCHIP's MPLAB 3.31.0
; To be embedded in a PIC17C756 (32MHz crystal)
;
;============================================================================
; Developped & Copyrighted by Robert LACOSTE
;============================================================================
;----------------------------------------------------------------------------
; System definitions
;----------------------------------------------------------------------------
PROCESSOR 17C756 ; Assembler directives
RADIX HEX
ERRORLEVEL 0
ERRORLEVEL -302 ; no bank control warnings
TITLE "PIC'SPECTRUM"
SUBTITLE "(C) Robert Lacoste"
#include "P17C756.INC" ; Processor dependant declarations
; config register :
; XT osc, no watchdog, brown-out reset active, microcontroler
__CONFIG (_XT_OSC & _WDT_OFF & _BODEN_ON & _MC_MODE)
;----------------------------------------------------------------------------
; Application constants
;----------------------------------------------------------------------------
MAXPIXVAL equ D'127' ; maximum scaled pixel value
INITTIM equ H'FFFF'-D'254'+D'13'+D'5'; timer load value,
; 254 because 31.77µS=254*4/32MHz
; minus 13 for irq to reload delay
; minus 5 for timer to irq delay
BKG_COLOR equ B'00000100' ; background=Blue
SLINE_COLOR equ B'00000011' ; separation lines=Yellow
SHORTS_COLOR equ B'00000011' ; small scale indicator=Yellow
LONGS_COLOR equ B'00000011' ; long scale indicator=Yellow
FREQ_COLOR equ B'00000001' ; Frequency bars=Red
BKGTITLE_COLOR equ B'00000010' ; Background title=Green
TITLE_COLOR equ B'00000000' ; Title=Black
HOLD_COLOR equ B'00000001' ; Hold=Red
;----------------------------------------------------------------------------
; Vectors
;----------------------------------------------------------------------------
reset_vector org H'0000'
goto start ; Initialisation
intpin_vector org H'0008'
goto start ; should not occur
timer0_vector org H'0010'
goto it_timer ; horizontal sync interrupt
t0cki_vector org H'0018'
goto start ; should not occur
periph_vector org H'0020'
goto start ; should not occur
start_appl org H'0050' ; start of application area
;----------------------------------------------------------------------------
; Inclusion of extern application files
;----------------------------------------------------------------------------
#include "vars.inc" ; Variables declarations
#include "fixed.inc" ; Fixed point arithmetic
#include "testsig.inc" ; Test signals generation
#include "fft.inc" ; FFT calculation routines
#include "powers.inc" ; power calculation & display access
#include "irq.inc" ; interrupt routine & video generation
;----------------------------------------------------------------------------
; Main starting point
;----------------------------------------------------------------------------
start nop
BANKSEL zone_main
;--> Initialisation
call initialize ; initialization of ports & variables
call realfft ; do the first FFT (on the test signal)
call init_timer ; launch timer0 interrupts
mainloop nop
;--> Power spectrum calculation & scaling
movlb 0 ; if RB7=0 (mode log),
btfsc PORTB,7
goto spectlin
spectlog call powerlog ; calculate spectrum in log scale
goto main1
spectlin call powerlin ; else calculate spectrum in lin scale
main1 nop
;--> Analog acquisition
movlb 0 ; if RB6=1 (non hold mode),
btfss PORTB,6 ; do analog sample acquisition :
goto main2
movlb 1 ; RD1=1 (debug line : ADC going on)
bsf PORTD,1
BANKSEL num_sample ; sample number=0
clrf num_sample,F
call init_adc ; initialize analog acquisition
BANKSEL acq_request
movlw 1 ; put acqrequest flag to 1
movwf acq_request
clrf WREG,F ; and wait for it to be 0
acqwait cpfseq acq_request
goto acqwait
movlb 1 ; RD1=0 (debug line : ADC going on)
bcf PORTD,1
;--> Do the FFT
movlb 1 ; RD0=1 (debug line : FFT going on)
bsf PORTD,0
BANKSEL zone_main
call realfft ; do the FFT
movlb 1 ; RD0=0 (debug line : FFT going on)
bcf PORTD,0
;--> And loop !
main2 goto mainloop
;----------------------------------------------------------------------------
; Ports & variables initialization
;----------------------------------------------------------------------------
initialize nop
;--> Variables initialization
BANKSEL acq_request ; reset adc control registers
clrf acq_request,F
clrf num_sample,F
BANKSEL scan_line ; reset scan line number
clrf scan_line,F ; (will be incremented to 1 at the
clrf scan_line+1,F ; first interrupt)
BANKSEL displ0 ; reset displ0 buffer
movlw low displ0
movwf FSR0
bcf ALUSTA,FS1 ; auto increment mode
bsf ALUSTA,FS0
bcf ALUSTA,C
movlw low displ0+D'64'
rstdispl0 clrf INDF0,F
cpfseq FSR0
goto rstdispl0
BANKSEL displ1 ; reset displ1 buffer
movlw low displ1
movwf FSR0
bcf ALUSTA,FS1 ; auto increment mode
bsf ALUSTA,FS0
bcf ALUSTA,C
movlw low displ0+D'64'
rstdispl1 clrf INDF0,F
cpfseq FSR0
goto rstdispl1
bsf ALUSTA,FS1 ; return to non-increment mode
BANKSEL zone_main
m_ldaconst H'2000' ; generate test square signal
movlw D'16'
call test_square
;--> Ports initialization
movlw B'11111000' ; RB0 to RB2 are outputs
movlb 0
movwf DDRB
clrf PORTB,F ; initialized to 0
movlw B'10101111' ; RC4 and RC6 are outputs
movlb 1
movwf DDRC
bcf PORTC,4 ; RC4=0 (Hsync)
bsf PORTC,6 ; RC6=1 (Vsync)
movlw B'11111000' ; RD0 to RD2 are outputs
movlb 1
movwf DDRD
clrf PORTD,F ; initialized to 0
movlw B'01111111' ; RG7 is output
movlb 5
movwf DDRG
clrf PORTG,F ; initialized to 0
return
;----------------------------------------------------------------------------
; Initialization of timer0
;
; Generate an interrupt every 31.77 micro-second (horizontal refresh
; rate for VGA display in 640x350 mode = 31.476KHz)
;
; Warning : interrupts will start immediatly after calling this routine
;----------------------------------------------------------------------------
init_timer nop
bsf CPUSTA,GLINTD ; disable global interrupts
bsf T0STA,T0CS ; select internal clock
bcf T0STA,T0PS3 ; and prescale factor 1:1
bcf T0STA,T0PS2
bcf T0STA,T0PS1
bcf T0STA,T0PS0
BANKSEL tmpcpt
movlw high INITTIM ; load timer
movwf tmpcpt
movlw low INITTIM
movwf TMR0L
movfp tmpcpt,TMR0H
bcf INTSTA,PEIE ; disable PEI interrupts
bcf INTSTA,T0CKIE ; disable external interrupts on RA1
bcf INTSTA,INTE ; disable external interrupts on RA0
bsf INTSTA,T0IE ; enable timer0 interrupts
bcf CPUSTA,GLINTD ; enable global interrupts
return
;----------------------------------------------------------------------------
; Configuration of analog acquisition port
;
; Connect the analog source and configure the A/D sub-system. Acquisition
; will be done by the interrupt routine synchronously with video generation.
;----------------------------------------------------------------------------
init_adc movlb 5
movlw B'10000000' ; clock=F/64 (2µS conversion),
movwf ADCON1 ; left justified, ref 0/5V
movlw B'10000000' ; select chanel AD8
movwf ADCON0
bsf ADCON0,ADON ; switch on ADC sub-system
return
END
;============================================================================
; - END OF FILE -
;============================================================================
;============================================================================
; PROJECT : UPS'SPECTRUM
;
; FILE : VARS.INC
;
; VERSION : 1.0
;
; DESCRIPTION :
;
; Definition of all RAM variables, bank per bank.
; Usage of each variable (used by main program, by interrupt routine or
; both) is defined
;
;============================================================================
; Developped & Copyrighted by Robert LACOSTE
;============================================================================
;----------------------------------------------------------------------------
; Unbanked RAM
;----------------------------------------------------------------------------
; unbanked RAM $1A to $1A : private unbanked save location for interrupt
; routine. Other locations are in bank 0.
cblock H'001A'
sv_bsr ; BSR save location
endc
; unbanked ram $1B to $1F : arithmetic working registers, to be used only
; by the main program
cblock H'001B' ; arithmetic working registers
ra:2 ; (format s-2-13)
rb:2 ; (format s-2-13)
rdiv:1 ; (8 bit unsigned int)
endc
;----------------------------------------------------------------------------
; Bank 0
;----------------------------------------------------------------------------
; $20 to $7F : private registers for the interrupt routine
; and exchange registers & flags between main pgr and interrupt
cblock H'0020'
zone_irq:0
endc
cblock
scan_line:2 ; scan line number, from 1 to 449, H-L
frame_num:1 ; frame number (for blinkings)
tmpcolor:1 ; temporary storage of color
tmpi:2 ; temporary variable
tmpi2:2 ; temporary variable
endc
cblock
sv_alusta ; save location for registers
sv_wreg ; during interrupt
sv_fsr0
endc
; WARNING : only these 4 registers (with bsr, saved in
; non-banked ram) are automaticaly saved. Be carefull when
; using FSR1 or table read registers !
; Exchange registers et flags between main pgr and interrupt
cblock
acq_request:1 ; Analog acquisition flag
; (0:finished, 1:sampling, 2:convert)
num_sample:1 ; Analog sample number
endc
; $80 to $FF : FFT data buffer 0...63 (2 bytes/value, big endian : H-L)
cblock H'0080'
data0:128 ; (format s-2-13)
endc
;----------------------------------------------------------------------------
; Bank 1
;----------------------------------------------------------------------------
; $20 to $7F : private registers for the main program
cblock H'0120'
zone_main:0
endc
cblock ; temporary variables for FFT and
; powers
wr:2 ; (format s-2-13)
wpr:2 ; (format s-2-13)
wi:2 ; (format s-2-13)
wpi:2 ; (format s-2-13)
theta:2 ; (format s-2-13)
mmax:1 ; counter
m:1 ; counter
j:1 ; counter
istep:1 ; counter
i:1 ; counter
i1:1 ; counter
i2:1 ; counter
i3:1 ; counter
i4:1 ; counter
endc
cblock ; temporary arithm. variables
h1r:2 ; (format s-2-13)
h1i:2 ; (format s-2-13)
h2r:2 ; (format s-2-13)
h2i:2 ; (format s-2-13)
wtemp:2 ; (format s-2-13)
endc
cblock ; generic counters
cptm:2 ; (16 bit unsigned int)
cpti:2 ; (16 bit unsigned int)
cptj:2 ; (16 bit unsigned int)
endc
cblock ; temporary registers for math.inc
mres3:1 ; for m_mult and m_divi
mres2:1
mres1:1
mres0:1
msign:1
x0:2 ; for m_sin
x1:2
x2:2
sin_saveb:2
scaletmp:2 ; for m_scalelin and m_scalelog
logresult:2 ; for m_scalelog
endc
cblock ; temporary registers for testsig.inc
test_halfp:1
test_step:2
test_cval:2
endc
cblock
tmpcpt:1 ; temporary register for inittimer
endc
; $80 to $FF : FFT data buffer 64...127 (2 bytes/value, big endian : H-L)
cblock H'0180'
data1:128 ; (format s-2-13)
endc
;----------------------------------------------------------------------------
; Bank 2
;----------------------------------------------------------------------------
; $20 to $5F : Display buffer 0...63
cblock H'0220'
displ0:64 ; (value 0..MAXPIXVAL)
endc
; $60 to $7F : unused
; $80 to $FF : FFT data buffer 128...191 (2 bytes/value, big endian : H-L)
cblock H'0280'
data2:128 ; (format s-2-13)
endc
;----------------------------------------------------------------------------
; Bank 3
;----------------------------------------------------------------------------
; $20 to $5F : Display buffer 64...127
cblock H'0320'
displ1:64 ; (value 0..MAXPIXVAL)
endc
; $60 to $7F : unused
; $80 to $FF : FFT data buffer 192...255 (2 bytes/value, big endian : H-L)
cblock H'0380'
data3:128 ; (format s-2-13)
endc
;============================================================================
; - END OF FILE -
;============================================================================
;============================================================================
; PROJECT : PIC'SPECTRUM
;
; FILE : FIXED.INC
;
; VERSION : 1.0
;
; DESCRIPTION :
;
; Fixed point math routines, using a s-2-13 format (sign bit in 2-complement,
; 2 bits for the integer part, 13 bits for the decimal part).
;
; So values ranging +/-3.99999, resolution 1/2 exp 13 = 0.000122
;
; All functions and macros operate on registers ra,rb and rdiv.
; Storage could be in a generic "arithmetic" register (2 bytes) or in the
; FFT data storage table ("data")
;
; The FFT data table ("data") is a 4x64 word (2 bytes) array, each of the
; four blocks being at at fixed adress ($80 to $ff) in the 4 banks.
;
; WARNING : ra/rb/rdiv are supposed to be in unbanked memory. Bank selector
; must be zone_main on input (access to arithmetic tempory registers) and is
; garanteed to be zone_main on exit
;
; In general, WREG is scrambled
;
;============================================================================
; Developped & Copyrighted by Robert LACOSTE
;============================================================================
;----------------------------------------------------------------------------
; m_lda : copy a given general register (2 bytes) in register A
;----------------------------------------------------------------------------
m_lda macro inreg
movfp inreg,WREG
movwf ra
movfp inreg+1,WREG
movwf ra+1
endm
;----------------------------------------------------------------------------
; m_ldai : get the data value pointed by reg and store it in A
;----------------------------------------------------------------------------
m_ldai macro indexreg
movfp indexreg, WREG
movlr 0 ; start with bank 0
btfsc WREG,7 ; select the good bank
bsf BSR,5
btfsc WREG,6 ; based on 2 first bits of WREG
bsf BSR,4
bcf ALUSTA,C ; multiply by 2
rlcf WREG,1
bsf WREG,7 ; and set high bit (data start at $80)
movwf FSR0 ; and use it as an index
movpf INDF0,ra ; to get msb value
incf FSR0,1
movpf INDF0,ra+1 ; and lsb value
BANKSEL zone_main ; reset bank register
endm
;----------------------------------------------------------------------------
; m_ldb : copy a given general register (2 bytes) in register B
;----------------------------------------------------------------------------
m_ldb macro inreg
movfp inreg,WREG
movwf rb
movfp inreg+1,WREG
movwf rb+1
endm
;----------------------------------------------------------------------------
; m_ldbi : get the data value pointed by reg and store it in B
;----------------------------------------------------------------------------
m_ldbi macro indexreg
movfp indexreg,WREG
movlr 0 ; start with bank 0
btfsc WREG,7 ; select the good bank
bsf BSR,5
btfsc WREG,6 ; based on 2 first bits of WREG
bsf BSR,4
bcf ALUSTA,C ; multiply by 2
rlcf WREG,1
bsf WREG,7 ; and set high bit (data start at $80)
movwf FSR0 ; and use it as an index
movpf INDF0,rb ; to get msb value
incf FSR0,1
movpf INDF0,rb+1 ; and lsb value
BANKSEL zone_main ; reset bank register
endm
;----------------------------------------------------------------------------
; m_lddiv : copy a given register (int, 1 byte) in register DIV
;----------------------------------------------------------------------------
m_lddiv macro inreg
movfp inreg,WREG
movwf rdiv
endm
;----------------------------------------------------------------------------
; m_sta : store the value of A in a given general register (2 bytes)
;----------------------------------------------------------------------------
m_sta macro outreg
movfp ra,WREG
movwf outreg
movfp ra+1,WREG
movwf outreg+1
endm
;----------------------------------------------------------------------------
; m_stai : store the value of A in the data value pointed by reg
;----------------------------------------------------------------------------
m_stai macro indexreg
movfp indexreg, WREG
movlr 0 ; start with bank 0
btfsc WREG,7 ; select the good bank
bsf BSR,5
btfsc WREG,6 ; based on 2 first bits of WREG
bsf BSR,4
bcf ALUSTA,C ; multiply by 2
rlcf WREG,1
bsf WREG,7 ; and set high bit (data start at $80)
movwf FSR0 ; and use it as an index
movfp ra,INDF0 ; to store msb value
incf FSR0,1
movfp ra+1,INDF0 ; and lsb value
BANKSEL zone_main ; reset bank register
endm
;----------------------------------------------------------------------------
; m_ldaconst : load an immediate value in A
;----------------------------------------------------------------------------
m_ldaconst macro immvalue
movlw high immvalue
movwf ra
movlw low immvalue
movwf ra+1
endm
;----------------------------------------------------------------------------
; m_mvba : copy B to A
;----------------------------------------------------------------------------
m_mvba macro
movfp rb,WREG
movwf ra
movfp rb+1,WREG
movwf ra+1
endm
;----------------------------------------------------------------------------
; m_mvab : copy A to B
;----------------------------------------------------------------------------
m_mvab macro
movfp ra,WREG
movwf rb
movfp ra+1,WREG
movwf rb+1
endm
;----------------------------------------------------------------------------
; m_add : add B to A (A=A+B)
;----------------------------------------------------------------------------
m_add macro
movfp rb+1,WREG ; low byte first
addwf ra+1,1
movfp rb,WREG ; and high byte with carry
addwfc ra,1
endm
;----------------------------------------------------------------------------
; m_sub : substract B to A (A=A-B)
;----------------------------------------------------------------------------
m_sub macro
movfp rb+1,WREG ; low byte first
subwf ra+1,1
movfp rb,WREG ; and high byte with borrow
subwfb ra,1
endm
;----------------------------------------------------------------------------
; m_mult : multiply A to B (A=A*B)
; Warning : overflow not detected if result>4
;----------------------------------------------------------------------------
m_mult movfp ra+1,WREG ; low byte x low byte
mulwf rb+1
movpf PRODH,mres1
movpf PRODL,mres0
movfp ra,WREG ; high byte x high byte
mulwf rb
movpf PRODH,mres3
movpf PRODL,mres2
movfp ra+1,WREG ; low byte x high byte
mulwf rb
movfp PRODL,WREG
addwf mres1,F
movfp PRODH,WREG
addwfc mres2,F
clrf WREG,F
addwfc mres3,F
movfp ra,WREG ; high byte x low byte
mulwf rb+1
movfp PRODL,WREG
addwf mres1,F
movfp PRODH,WREG
addwfc mres2,F
clrf WREG,F
addwfc mres3,F
btfss rb,7 ; test if B<0
goto sign_ra
movfp ra+1,WREG ; if so, adjust value
subwf mres2,F
movfp ra,WREG
subwfb mres3,F
sign_ra btfss ra,7 ; test if A<0
goto sign_end
movfp rb+1,WREG ; if so, adjust value
subwf mres2,F
movfp rb,WREG
subwfb mres3,F
sign_end rlcf mres1,F ; shift left one time
rlcf mres2,F
rlcf mres3,F
rlcf mres1,F ; shift left one time
rlcf mres2,F
rlcf mres3,F
rlcf mres1,F ; shift left one time
rlcf mres2,F
rlcf mres3,F
movfp mres3, ra ; forget mres1 and store result
movfp mres2, ra+1 ; in register A
end_mult return
;----------------------------------------------------------------------------
; m_divi : divide A with rdiv (A=A/DIV), rdiv being a non signed integer
; value and not a fixed decimal value
;
; call routines provided in Microchip's application notes (see div.inc)
;----------------------------------------------------------------------------
; Correspondances between AN617 variables and pic'spectrum's...
#define AARGB0 (ra)
#define AARGB1 (ra+1)
#define ACCB0 (ra)
#define ACCB1 (ra+1)
#define BARGB0 (rdiv)
#define REMB0 (mres0)
#define TEMP (mres1)
#include "div.inc" ; include 16/8 unsigned routine
; from microchip's application
; note AN617
m_divi bcf msign,0
btfss ra,7 ; save sign of A
goto m_divdiv
bsf msign,0
comf ra,F ; if A<0, A=-A
comf ra+1,F
movlw 1
addwf ra+1,F
movlw 0
addwfc ra,F
m_divdiv call FXD1608U ; do the division
btfss msign,0 ; if A was <0
goto end_mdivi
comf ra,F ; A=-A
comf ra+1,F
movlw 1
addwf ra+1,F
movlw 0
addwfc ra,F
end_mdivi return
;----------------------------------------------------------------------------
; m_div2 : divide A with 2 (A=A/2)
;----------------------------------------------------------------------------
m_div2 macro
bcf ALUSTA,C
rrcf ra,1 ; divide high byte
rrcf ra+1,1 ; and low byte
btfsc ra,6 ; test old sign bit
bsf ra,7 ; if set, report it to msb
endm
;----------------------------------------------------------------------------
; m_sin : replace A with sin(A)
;
; Sinus calculated by interpolation of tables values got with the MSB of A
; (v_msb and v_msb+1 are the table values corresponding for msb A and the next
; one in the table, with rollover on 0)
;
; ra=(((v_msb+1)*lsb ra+(v_msb)*(1-lsb ra));
;
;----------------------------------------------------------------------------
radix dec
sintable dw 0
dw 255, 511, 766, 1021, 1274, 1527, 1777, 2026
dw 2273, 2518, 2760, 3000, 3237, 3470, 3700, 3927
dw 4150, 4368, 4583, 4793, 4998, 5198, 5393, 5583
dw 5768, 5947, 6120, 6287, 6448, 6603, 6751, 6893
dw 7028, 7156, 7277, 7391, 7498, 7597, 7689, 7774
dw 7850, 7920, 7981, 8035, 8081, 8119, 8149, 8171
dw 8185, 8191, 8189, 8179, 8162, 8136, 8102, 8060
dw 8011, 7953, 7888, 7815, 7735, 7647, 7551, 7448
dw 7338, 7221, 7097, 6965, 6827, 6682, 6531, 6373
dw 6210, 6040, 5864, 5682, 5495, 5303, 5105, 4902
dw 4695, 4483, 4266, 4046, 3821, 3593, 3361, 3126
dw 2888, 2647, 2404, 2158, 1910, 1660, 1408, 1156
dw 902, 647, 391, 135, -120, -375, -631, -886
dw -1140, -1393, -1644, -1894, -2142, -2388, -2632, -2873
dw -3111, -3347, -3579, -3807, -4032, -4253, -4469, -4682
dw -4889, -5092, -5290, -5483, -5671, -5853, -6029, 6199
dw 6029, 5853, 5671, 5483, 5290, 5092, 4889, 4682
dw 4469, 4253, 4032, 3807, 3579, 3347, 3111, 2873
dw 2632, 2388, 2142, 1894, 1644, 1393, 1140, 886
dw 631, 375, 120, -135, -391, -647, -902, -1156
dw -1408, -1660, -1910, -2158, -2404, -2647, -2888, -3126
dw -3361, -3593, -3821, -4046, -4266, -4483, -4695, -4902
dw -5105, -5303, -5495, -5682, -5864, -6040, -6210, -6373
dw -6531, -6682, -6827, -6965, -7097, -7221, -7338, -7448
dw -7551, -7647, -7735, -7815, -7888, -7953, -8011, -8060
dw -8102, -8136, -8162, -8179, -8189, -8191, -8185, -8171
dw -8149, -8119, -8081, -8035, -7981, -7920, -7850, -7774
dw -7689, -7597, -7498, -7391, -7277, -7156, -7028, -6893
dw -6751, -6603, -6448, -6287, -6120, -5947, -5768, -5583
dw -5393, -5198, -4998, -4793, -4583, -4368, -4150, -3927
dw -3700, -3470, -3237, -3000, -2760, -2518, -2273, -2026
dw -1777, -1527, -1274, -1021, -766, -511, -255
radix hex
m_sin movpf rb,sin_saveb ; save B register
movpf rb+1,sin_saveb+1
clrf x0+1,F
movlw low (sintable) ; get table value corresponding
addwf ra,W ; to the MSB of A -> x0
movwf TBLPTRL
movlw high (sintable)
addwfc x0+1,W
movwf TBLPTRH
tablrd 0,0,x0+1 ; dummy read, update TABLATH
tlrd 1,x0 ; read high byte
tablrd 0,1,x0+1 ; and low byte.
clrf x1+1,F
movfp ra,WREG ; get table value corresponding
incf WREG,W ; to the MSB of A+1, with rollover at 0
addlw low (sintable) ; -> x1
movwf TBLPTRL
movlw high (sintable)
addwfc x1+1,W
movwf TBLPTRH
tablrd 0,0,x1+1 ; dummy read, update TABLATH
tlrd 1,x1 ; read high byte
tablrd 0,1,x1+1 ; and low byte.
movfp ra+1,WREG ; get LSB of A in B
movwf rb ; and convert it to a weight factor
clrf rb+1,F
bcf ALUSTA,C
rrcf rb,F
rrcf rb+1,F
bcf ALUSTA,C
rrcf rb,F
rrcf rb+1,F
bcf ALUSTA,C
rrcf rb,F
rrcf rb+1,F
m_lda x1 ; multiply "next" table value by B
call m_mult
m_sta x2 ; and save it
m_ldaconst H'2000' ; calculate 1-weight factor
m_sub
m_ldb x0 ; and multiply it by "previous" value
call m_mult
m_ldb x2 ; add the 2 values
m_add
end_sin m_ldb sin_saveb ; restore B
return
;----------------------------------------------------------------------------
; m_scalelin : linear scaling of A, result in WREG (0 to MAXPIXVAL)
; and in rdiv
;----------------------------------------------------------------------------
m_scalelin movpf ra,scaletmp ; copy A to scaletmp reg
movpf ra+1,scaletmp+1
bcf ALUSTA,C ; divide by 16
rrcf scaletmp,F ; 2
rrcf scaletmp+1,F
bcf ALUSTA,C
rrcf scaletmp,F ; 4
rrcf scaletmp+1,F
bcf ALUSTA,C
rrcf scaletmp,F ; 8
rrcf scaletmp+1,F
bcf ALUSTA,C
rrcf scaletmp,F ; 16
rrcf scaletmp+1,F
tstfsz scaletmp ; if tmp>255, return MAXPIVXVAL
goto m_scaleover
movlw MAXPIXVAL ; if tmp>MAXPIXVAL, return MAXPIXVAL
cpfslt scaletmp+1
goto m_scaleover
movfp scaletmp+1,WREG
goto end_scalelin
m_scaleover movlw MAXPIXVAL ; return MAXPIXVAL
end_scalelin movwf rdiv
return
;----------------------------------------------------------------------------
; m_scalelog : logarithmic scaling of A, result in WREG (0 to 127)
; and in rdiv
;----------------------------------------------------------------------------
radix dec
logtable dw -4652, -4599, -4548, -4496, -4445, -4394, -4344, -4294
dw -4245, -4196, -4147, -4098, -4050, -4002, -3955, -3908
dw -3861, -3815, -3769, -3723, -3677, -3632, -3587, -3543
dw -3498, -3454, -3410, -3367, -3324, -3281, -3238, -3196
dw -3154, -3112, -3071, -3029, -2988, -2947, -2907, -2867
dw -2826, -2787, -2747, -2708, -2669, -2630, -2591, -2553
dw -2514, -2476, -2438, -2401, -2363, -2326, -2289, -2253
dw -2216, -2180, -2143, -2107, -2072, -2036, -2001, -1965
dw -1930, -1895, -1861, -1826, -1792, -1758, -1724, -1690
dw -1656, -1623, -1590, -1556, -1523, -1491, -1458, -1425
dw -1393, -1361, -1329, -1297, -1265, -1234, -1202, -1171
dw -1140, -1109, -1078, -1047, -1017, -986, -956, -926
dw -896, -866, -836, -806, -777, -748, -718, -689
dw -660, -631, -603, -574, -545, -517, -489, -461
dw -433, -405, -377, -349, -322, -294, -267, -240
dw -213, -186, -159, -132, -105, -79, -52, -26
radix hex
m_scalelog tstfsz ra ; if A<32, return 0
goto log_testover
movlw D'32'
cpfslt ra+1
goto log_testover
movlw 0
goto end_scalelog
log_testover movlw high (D'032'*MAXPIXVAL) ; if A>32xMAXPIXVAL,
cpfsgt ra ; return MAXPIXVAL
goto log_1
goto log_scaleover
log_1 cpfseq ra
goto log_ok
movlw low (D'032'*MAXPIXVAL)
cpfslt ra+1
goto log_scaleover
log_ok clrf logresult,F ; clear result register
clrf logresult+1,F
movpf ra,scaletmp ; copy A to scaletmp reg
movpf ra+1,scaletmp+1 ; (A is between 32 and 32xMAXPIXVAL)
bcf ALUSTA,C ; multiply tmp by 8
rlcf scaletmp+1,F ; 2
rlcf scaletmp,F
bcf ALUSTA,C
rlcf scaletmp+1,F ; 4
rlcf scaletmp,F
bcf ALUSTA,C
rlcf scaletmp+1,F ; 8
rlcf scaletmp,F ; (tmp is between 256 and 256xMAXPIXVAL)
; normalization phase, until tmp < 256
log_normalize tstfsz scaletmp
goto log_2
goto log_endnorm
log_2 movlw low D'4652' ; add 256*ln(2)*MAXPIXVAL/ln(MAXPIXVAL)
addwf logresult+1,F ; (=4652) to current evaluation
movlw high D'4652'
addwfc logresult,F
bcf ALUSTA,C
rrcf scaletmp,F ; divide tmp by 2
rrcf scaletmp+1,F
goto log_normalize ; and loop
log_endnorm movlw H'7F' ; tmp is now between 128 and 255
andwf scaletmp+1,W ; substract 128
addlw low (logtable) ; and use it as index in logtable
movwf TBLPTRL
movlw high (logtable)
addwfc scaletmp,W
movwf TBLPTRH
tablrd 0,0,scaletmp+1 ; dummy read, update TABLATH
tlrd 1,scaletmp ; read high byte
tablrd 0,1,scaletmp+1 ; and low byte.
movfp scaletmp+1,WREG
addwf logresult+1,F ; add this value to result
movfp scaletmp,WREG
addwf logresult,F
movfp logresult,WREG ; returned value is high byte
goto end_scalelog
log_scaleover movlw MAXPIXVAL
end_scalelog movwf rdiv
return
;----------------------------------------------------------------------------
; m_mathtest : Test utility for mathlib functions
;
; to be used for debug only
;----------------------------------------------------------------------------
m_mathtest m_ldaconst H'23EF' ; (1.123)
m_mvab
m_ldaconst H'B561' ; (-2.332)
m_lddiv 0
nop ; expected :
; RA = -19103 $B561 -2.331909 RB = 9199 $23EF 1.122925 RDIV = 0 $00
call m_sin
nop ; expected :
; RA = -5931 $E8D5 -0.723999 RB = 9199 $23EF 1.122925 RDIV = 0 $00
call m_mult
nop ; expected :
; RA = -6660 $E5FC -0.812988 RB = 9199 $23EF 1.122925 RDIV = 0 $00
m_mvab
m_ldaconst H'F88B' ; (-0.233)
m_add
nop ; expected :
; RA = -8568 $DE88 -1.045898 RB = -6660 $E5FC -0.812988 RDIV = 0 $00
movlw D'44'
movwf h1i
m_stai h1i
m_ldaconst 0
movlw D'44'
movwf h1i
m_ldbi h1i
m_mvba
nop ; expected :
; RA = -8568 $DE88 -1.045898 RB = -8568 $DE88 -1.045898 RDIV = 0 $00
m_ldaconst H'F8DB' ; (-0.2233);
m_sub
nop ; expected :
; RA = 6739 $1A53 0.822632 RB = -8568 $DE88 -1.045898 RDIV = 0 $00
m_mvab
m_ldaconst H'470A' ; (2.22)
m_add
nop ; expected :
; RA = 24925 $615D 3.042603 RB = 6739 $1A53 0.822632 RDIV = 0 $00
call m_sin
m_mvab
m_ldaconst H'F560' ; (-0.332)
call m_mult
nop ; expected :
; RA = -268 $FEF4 -0.032715 RB = 809 $0329 0.098755 RDIV = 0 $00
m_sta h1r
movlw D'31'
movwf h2r
m_lddiv h2r
call m_divi
nop ; expected :
; RA = -8 $FFF8 -0.000977 RB = 809 $0329 0.098755 RDIV = 31 $1F
m_ldb h1r
m_sub
call m_mult
nop ; expected :
; RA = -8 $FFF8 -0.000977 RB = -268 $FEF4 -0.032715 RDIV = 31 $1F
m_mvab
m_lda h1r
call m_sin
call m_mult
nop ; expected :
; RA = 0 $0000 0.000000 RB = -8 $FFF8 -0.000977 RDIV = 31 $1F
m_ldaconst H'18E2' ; (0.7776)
call m_scalelin
nop ; expected :
; RA = 6370 $18E2 0.777588 RB = -8 $FFF8 -0.000977 RDIV = 127 $7F
m_ldaconst H'C15' ; (0.3776);
call m_scalelin
nop ; expected :
; RA = 3093 $0C15 0.377563 RB = -8 $FFF8 -0.000977 RDIV = 96 $60
m_ldaconst H'C15' ; (0.3776)
m_div2
call m_scalelin
nop ; expected :
; RA = 1546 $060A 0.188721 RB = -8 $FFF8 -0.000977 RDIV = 48 $30
m_ldaconst H'18E2' ; (0.7776);
call m_scalelog
nop ; expected :
; RA = 6370 $18E2 0.777588 RB = -8 $FFF8 -0.000977 RDIV = 127 $7F
m_ldaconst H'C15' ; (0.3776)
call m_scalelog
nop ; expected :
; RA = 3093 $0C15 0.377563 RB = -8 $FFF8 -0.000977 RDIV = 119 $77
m_ldaconst H'C15' ; (0.3776)
m_div2
call m_scalelog
nop ; expected :
; RA = 1546 $060A 0.188721 RB = -8 $FFF8 -0.000977 RDIV = 101 $65
m_lda h1r
m_div2
call m_sin
m_mvab
m_ldaconst H'438D' ; (2.111)
call m_mult
nop ; expected :
; RA = -280 $FEE8 -0.034180 RB = -133 $FF7B -0.016235 RDIV = 101 $65
call m_scalelog
nop ; expected :
; RA = -280 $FEE8 -0.034180 RB = -133 $FF7B -0.016235 RDIV = 0 $00
return
;============================================================================
; - END OF FILE -
;============================================================================
;============================================================================
; PROJECT : PIC'SPECTRUM
;
; FILE : TESTSIG.INC
;
; VERSION : 1.0
;
; DESCRIPTION :
;
; Test signals generation (for validation of the FFT routines)
;
; A square test signal is generated during ram initialization, and is
; displayed if the Pic'Spectrum is switched on in hold mode.
;
;============================================================================
; Developped & Copyrighted by Robert LACOSTE
;============================================================================
;----------------------------------------------------------------------------
; test_square : Generate a square signal
;
; On input, amplitude is in math register A, half-period in WREG
;----------------------------------------------------------------------------
test_square clrf cpti,F ; cpti=index to data
clrf cptj,F ; cptj=phase
movwf test_halfp ; test_halfp=halfperiod
testsquare_b incf cptj,F ; increment phase
movfp cptj,WREG
cpfseq test_halfp ; equal to half-period ?
goto testsquare_norm
clrf cptj,F ; if yes, reset phase
m_mvab
m_ldaconst H'E000' ; and multiply phase by -1
call m_mult
testsquare_norm m_stai cpti ; store current amplitude
incfsz cpti,F
goto testsquare_b ; and loop
return
;----------------------------------------------------------------------------
; test_triangle : Generate a triangle signal
;
; On input, step is in math register A, half-period in WREG
;----------------------------------------------------------------------------
test_triangle clrf cpti,F ; cpti=index to data
movwf test_halfp ; halfp=halfperiod
bcf ALUSTA,C
rrcf WREG,W
movwf cptj ; cptj=phase (initialised to 50%)
m_sta test_step ; test_step=step
m_ldaconst 0
m_sta test_cval ; test_cval=current value
testtriangle_b incf cptj,F ; increment phase
movfp cptj,WREG
cpfseq test_halfp ; equal to half-period ?
goto testtriang_norm
clrf cptj,F ; if yes, reset phase
m_lda test_step
m_mvab
m_ldaconst H'E000' ; and multiply step by -1
call m_mult
m_sta test_step
testtriang_norm m_lda test_cval ; increment value by step value
m_mvab
m_lda test_step
m_add
m_sta test_cval
m_stai cpti ; store current amplitude
incfsz cpti,F
goto testtriangle_b ; and loop
return
;============================================================================
; - END OF FILE -
;============================================================================
;============================================================================
; PROJECT : PIC'SPECTRUM
;
; FILE : FFT.INC
;
; VERSION : 1.0
;
; DESCRIPTION :
;
; 256 points FFT routines, using s/2/13 format for numeric computations
; (through the fixed.inc library). All data are stored in the internal
; registers of the 17C756 (array DATA).
;
; Execution time on a PIC17C756/32MHz : around 50ms without concurrent
; video generation (resulting in a 90-100ms refresh time with spectrum
; power calculation, analog acquisition and video refresh)
;
;============================================================================
; Developped & Copyrighted by Robert LACOSTE
;============================================================================
;----------------------------------------------------------------------------
; Complex FFT, radix-1, decimation in place, 128 points
;
; Algorithm from "Numerical recipes in C", manually compiled in assembler
; and adapted...
;
; Input : 128 complex values (each on 4 bytes), stored in data[0..511]
; For each data : byte 0 = MSB of real part
; byte 1 = LSB of real part
; byte 2 = MSB of complex part
; byte 3 = LSB of complex part
;
; Replace data[0..511] by its FFT (128 frequencies, complex values)
;----------------------------------------------------------------------------
fft nop ; Control point : Input FFT
; ------> initialisation
clrf j,F ; j=0
; nn=128 (implicit), n=256 (implicit)
; ------> bit reversal
clrf i,F ; for(i=0;i<n-1;i+=2) {
iloop1 nop
if1 movfp i,WREG ; if (j>i) {
cpfsgt j
goto endif1
m_ldai j ; m_ldai(j)
m_ldbi i ; m_ldbi(i)
m_stai i ; m_stai(i)
m_mvba ; m_mvba()
m_stai j ; m_stai(j);
incf j,F
incf i,F
m_ldai j ; m_ldai(j+1)
m_ldbi i ; m_ldbi(i+1)
m_stai i ; m_stai(i+1)
m_mvba ; m_mvba()
m_stai j ; m_stai(j+1)
decf j,F
decf i,F
endif1 nop ; } endif
movlw D'128' ; m=n>>1
movwf m
while1 movlw D'2' ; while(m>=2 && j>=m) {
cpfslt m
goto $+2
goto wend1
movfp m,WREG
cpfslt j
goto $+2
goto wend1
movfp m,WREG ; j-=m
subwf j,F
bcf ALUSTA,C ; m>>=1
rrcf m,F
wloop1 goto while1 ; }
wend1 movfp m,WREG ; j+=m
addwf j,F
inext1 incf i,F ; } next i
incfsz i,F
goto iloop1
; ------> FFT itself
movlw D'2' ; mmax=2
movwf mmax
while2 tstfsz mmax ; while(n>mmax) {
goto $+2
goto wend2
movfp mmax, WREG ; istep=mmax<<1
bcf ALUSTA,C
rlcf WREG,F
movwf istep
; theta=2pi/mmax
m_ldaconst H'6488' ; m_ldaconst(3.14159265459)
m_lddiv mmax ; m_lddiv(mmax>>1)
bcf ALUSTA,C
rrcf rdiv,F
call m_divi ; m_divi()
m_sta theta ; m_sta(&theta)
; wpr=-2*sin(theta/2)^2
movlw D'2' ; m_lddiv(2)
movwf rdiv
call m_divi ; m_divi()
call m_sin ; m_sin()
m_mvab ; m_mvab()
call m_mult ; m_mult()
m_mvab ; m_mvab()
m_ldaconst H'C000' ; m_ldaconst(-2.0)
call m_mult ; m_mult()
m_sta wpr ; m_sta(&wpr)
; wpi=n_sin(theta)
m_lda theta ; m_lda(theta)
call m_sin ; m_sin()
m_sta wpi ; m_sta(&wpi)
; wr=1, wi=0
m_ldaconst H'2000' ; m_ldaconst(1.0)
m_sta wr ; m_sta(&wr)
m_ldaconst H'0000' ; m_ldaconst(0.0)
m_sta wi ; m_sta(&wi)
ffttst1 nop
clrf m,F ; for(m=0;m<mmax-1;m+=2) {
mloop1 movfp mmax,WREG
decf WREG,W
cpfslt m
goto mend1
ffttst2 nop
movfp m,WREG ; for(i=m;i<n;i+=istep) {
movwf i
iloop2 nop
movfp i,WREG ; j=i+mmax
movwf j
movfp mmax,WREG
addwf j,F
ffttst3 nop
; h1r=wr*data[j]-wi*data[j+1]
m_lda wi ; m_lda(wi)
incf j,F ; m_ldbi(j+1)
m_ldbi j
decf j,F
call m_mult ; m_mult()
m_sta h1r ; m_sta(&h1r)
m_lda wr ; m_lda(wr)
m_ldbi j ; m_ldbi(j)
call m_mult ; m_mult()
m_ldb h1r ; m_ldb(h1r)
m_sub ; m_sub()
m_sta h1r ; m_sta(&h1r)
; h1i=wr*data[j+1]+wi*data[j]
m_lda wi ; m_lda(wi)
m_ldbi j ; m_ldbi(j)
call m_mult ; m_mult()
m_sta h1i ; m_sta(&h1i)
m_lda wr ; m_lda(wr)
incf j,F ; m_ldbi(j+1)
m_ldbi j
decf j,F
call m_mult ; m_mult()
m_ldb h1i ; m_ldb(h1i)
m_add ; m_add()
m_sta h1i ; m_sta(&h1i)
; butterfly update, with in-place scaling
; data[j]=(data[i]-h1r)/2
m_ldai i ; m_ldai(i)
m_ldb h1r ; m_ldb(h1r)
m_sub ; m_sub()
m_div2 ; m_div2()
m_stai j ; m_stai(j)
; data[j+1]=(data[i+1]-h1i)/2
incf i,F ; m_ldai(i+1)
m_ldai i
decf i,F
m_ldb h1i ; m_ldb(h1i)
m_sub ; m_sub()
m_div2 ; m_div2()
incf j,F ; m_stai(j+1)
m_stai j
decf j,F
; data[i]=(data[i]+h1r)/2
m_ldai i ; m_ldai(i)
m_ldb h1r ; m_ldb(h1r)
m_add ; m_add()
m_div2 ; m_div2()
m_stai i ; m_stai(i)
; data[i+1]=(data[i+1]+h1i)/2
incf i,F ; m_ldai(i+1)
m_ldai i
decf i,F
m_ldb h1i ; m_ldb(h1i)
m_add ; m_add()
m_div2 ; m_div2()
incf i,F ; m_stai(i+1)
m_stai i
decf i,F
inext2 tstfsz istep ; } next i
goto $+2
goto iend2
movfp istep,WREG
addwf i,F
btfss ALUSTA,C
goto iloop2
; wtemp=wr
iend2 m_lda wr ; m_lda(wr)
m_sta wtemp ; m_sta(&wtemp)
; wr=wr*wpr-wi*wpi+wr
m_lda wi ; m_lda(wi)
m_ldb wpi ; m_ldb(wpi)
call m_mult ; m_mult()
m_sta h1r ; m_sta(&h1r)
m_lda wr ; m_lda(wr)
m_ldb wpr ; m_ldb(wpr)
call m_mult ; m_mult()
m_ldb h1r ; m_ldb(h1r)
m_sub ; m_sub()
m_ldb wr ; m_ldb(wr)
m_add ; m_add()
m_sta wr ; m_sta(&wr)
; wi=wi*wpr+wtemp*wpi+wi
m_lda wtemp ; m_lda(wtemp)
m_ldb wpi ; m_ldb(wpi)
call m_mult ; m_mult()
m_sta h1i ; m_sta(&h1i)
m_lda wi ; m_lda(wi)
m_ldb wpr ; m_ldb(wpr)
call m_mult ; m_mult()
m_ldb h1i ; m_ldb(h1i)
m_add ; m_add()
m_ldb wi ; m_ldb(wi)
m_add ; m_add()
m_sta wi ; m_sta(&wi)
mnext1 incf m,F ; } next m
incf m,F
goto mloop1
mend1 nop
movfp istep,WREG ; mmax=istep
movwf mmax
wloop2 goto while2 ; } end while
wend2 return
;----------------------------------------------------------------------------
; Real FFT
;
; Algorithm from "Numerical recipes in C", manually compiled in assembler
; and adapted...
;
; Calculate FFT of a set of 256 real values stored in data[0..511]
; (2 bytes per value, MSB first).
;
; Replace these data by the positive frequency half of the FFT
; (128 frequencies, complex values). First and last frequencies (which are
; real) are in data[1] and data[2] respectively.
;
; Method : consider the 256 real values as interleaved real/imaginary parts
; of 128 complex values. Do a complex 128 points FFT, and find back the
; FFT of the real numbers from the output of the complex FFT...
;
; Nota : this method allow to do a real FFT with 30-40% less calculations
; and, more important, 50% less RAM requirement.
;----------------------------------------------------------------------------
realfft nop ; control point, N=256 (implicit)
; ------> do a complex FFT of half the number of points, odd real points
; as real data, even real points as imaginary data
call fft
;-------> and find the good values from the result...
; theta=2pi/n
m_ldaconst H'6488' ; m_ldaconst(3.14159265459)
movlw D'128' ; m_lddiv(n>>1)
movwf rdiv
call m_divi ; m_divi()
m_sta theta ; m_sta(&theta)
; wpr=-2*sin(theta/2)^2
movlw D'2' ; m_lddiv(2)
movwf rdiv
call m_divi ; m_divi()
call m_sin ; m_sin()
m_mvab ; m_mvab()
call m_mult ; m_mult()
m_mvab ; m_mvab()
m_ldaconst H'C000' ; m_ldaconst(-2.0)
call m_mult ; m_mult()
m_sta wpr ; m_sta(&wpr)
; wpi=n_sin(theta)
m_lda theta ; m_lda(theta)
call m_sin ; m_sin()
m_sta wpi ; m_sta(&wpi)
; wr=1+wpr, wi=wpi
m_ldb wpr ; m_ldb(wpr)
m_ldaconst H'2000' ; m_ldaconst(1.0)
m_add ; m_add()
m_sta wr ; m_sta(&wr)
m_lda wpi ; m_lda(wpi)
m_sta wi ; m_sta(&wi)
movlw D'2' ; for(i=2;i<=(n>>2);i++) {
movwf i
iloop3 movlw D'64'
cpfsgt i
goto $+2
goto iend3
movfp i,WREG ; i1=i+i-2
movwf i1
addwf i1,F
movlw D'2'
subwf i1,F
movfp i1,WREG ; i2=1+i1
movwf i2
incf i2,F
movfp i2,WREG ; i3=n-i2+1
comf WREG,W
incf WREG,W
incf WREG,W
movwf i3
incf WREG,W
movwf i4 ; i4=1+i3
; h1r=(data[i1]+data[i3])/2
m_ldai i1 ; m_ldai(i1)
m_ldbi i3 ; m_ldbi(i3)
m_add ; m_add()
m_div2 ; m_div2()
m_sta h1r ; m_sta(&h1r)
; h1i=(data[i2]-data[i4])/2
m_ldai i2 ; m_ldai(i2)
m_ldbi i4 ; m_ldbi(i4)
m_sub ; m_sub()
m_div2 ; m_div2()
m_sta h1i ; m_sta(&h1i)
; h2r=(data[i2]+data[i4])/2
m_ldai i2 ; m_ldai(i2)
m_ldbi i4 ; m_ldbi(i4)
m_add ; m_add()
m_div2 ; m_div2()
m_sta h2r ; m_sta(&h2r)
; h2i=-(data[i1]-data[i3])/2
m_ldai i3 ; m_ldai(i3)
m_ldbi i1 ; m_ldbi(i1)
m_sub ; m_sub()
m_div2 ; m_div2()
m_sta h2i ; m_sta(&h2i)
; data[i1]=h1r+wr*h2r-wi*h2i
m_lda wi ; m_lda(wi)
m_ldb h2i ; m_ldb(h2i)
call m_mult ; m_mult()
m_sta wtemp ; m_sta(&wtemp)
m_lda wr ; m_lda(wr)
m_ldb h2r ; m_ldb(h2r)
call m_mult ; m_mult()
m_ldb wtemp ; m_ldb(wtemp)
m_sub ; m_sub()
m_ldb h1r ; m_ldb(h1r)
m_add ; m_add()
m_stai i1 ; m_stai(i1)
; data[i2]=h1i+wr*h2i+wi*h2r
m_lda wi ; m_lda(wi)
m_ldb h2r ; m_ldb(h2r)
call m_mult ; m_mult()
m_sta wtemp ; m_sta(&wtemp)
m_lda wr ; m_lda(wr)
m_ldb h2i ; m_ldb(h2i)
call m_mult ; m_mult()
m_ldb wtemp ; m_ldb(wtemp)
m_add ; m_add()
m_ldb h1i ; m_ldb(h1i)
m_add ; m_add()
m_stai i2 ; m_stai(i2)
; data[i3]=h1r-wr*h2r+wi*h2i
m_lda wr ; m_lda(wr)
m_ldb h2r ; m_ldb(h2r)
call m_mult ; m_mult()
m_sta wtemp ; m_sta(&wtemp)
m_lda wi ; m_lda(wi)
m_ldb h2i ; m_ldb(h2i)
call m_mult ; m_mult()
m_ldb wtemp ; m_ldb(wtemp)
m_sub ; m_sub()
m_ldb h1r ; m_ldb(h1r)
m_add ; m_add()
m_stai i3 ; m_stai(i3)
; data[i4]=-h1i+wr*h2i+wi*h2r
m_lda wr ; m_lda(wr)
m_ldb h2i ; m_ldb(h2i)
call m_mult ; m_mult()
m_sta wtemp ; m_sta(&wtemp)
m_lda wi ; m_lda(wi)
m_ldb h2r ; m_ldb(h2r)
call m_mult ; m_mult()
m_ldb wtemp ; m_ldb(wtemp)
m_add ; m_add()
m_ldb h1i ; m_ldb(h1i)
m_sub ; m_sub()
m_stai i4 ; m_stai(i4)
; wtemp=wr
m_lda wr ; m_lda(wr)
m_sta wtemp ; m_sta(&wtemp)
; wr=wr*wpr-wi*wpi+wr
m_lda wi ; m_lda(wi)
m_ldb wpi ; m_ldb(wpi)
call m_mult ; m_mult()
m_sta h1r ; m_sta(&h1r)
m_lda wr ; m_lda(wr)
m_ldb wpr ; m_ldb(wpr)
call m_mult ; m_mult()
m_ldb h1r ; m_ldb(h1r)
m_sub ; m_sub()
m_ldb wr ; m_ldb(wr)
m_add ; m_add()
m_sta wr ; m_sta(&wr)
; wi=wi*wpr+wtemp*wpi+wi
m_lda wi ; m_lda(wi)
m_ldb wpr ; m_ldb(wpr)
call m_mult ; m_mult()
m_sta h1r ; m_sta(&h1r)
m_lda wtemp ; m_lda(wtemp)
m_ldb wpi ; m_ldb(wpi)
call m_mult ; m_mult()
m_ldb h1r ; m_ldb(h1r)
m_add ; m_add()
m_ldb wi ; m_ldb(wi)
m_add ; m_add()
m_sta wi ; m_sta(&wi)
inext3 incf i,F ; } next i
goto iloop3
iend3 nop
; ------> special case of the 2 first data
; h1r=data[0]
movlw 0 ; m_ldai(0)
movwf i
m_ldai i
m_sta h1r ; m_sta(&h1r)
; data[0]=h1r+data[1]
movlw 1 ; m_ldbi(1)
movwf i
m_ldbi i
m_add ; m_add()
movlw 0 ; m_stai(0)
movwf i
m_stai i
; data[1]=h1r-data[1]
m_lda h1r ; m_lda(h1r)
movlw 1 ; m_ldbi(1)
movwf i
m_ldbi i
m_sub ; m_sub()
movlw 1 ; m_stai(1)
movwf i
m_stai i
endrft return
;============================================================================
; - END OF FILE -
;============================================================================
;============================================================================
; PROJECT : PIC'SPECTRUM
;
; FILE : POWERS.INC
;
; VERSION : 1.0
;
; DESCRIPTION :
;
; Power spectrum calculation starting with the result of the real FFT.
; Result power is scaled (lin or log) and stored in the display buffer
; area (dispbuf) : 1 byte per frequency (1 to 126)
;
; This file define also the routine used by the interrupt routine to
; access the display buffer (with is paged)
;
; The display buffer table ("dispbuf") is a 2x64 bytes array, each of the
; two blocks being at at fixed adress ($20 to $5F) in the banks 2 and 3.
;
; Nota : dispbuf(0) (DC frequency) is not displayed.
;
;============================================================================
; Developped & Copyrighted by Robert LACOSTE
;============================================================================
;----------------------------------------------------------------------------
; dispbufwr : Write a value in the given display buffer cell
; On input : WREG = index (0 to 127)
; RDIV = value (0 to MAXPIXVAL)
; On output : bank selected = zone_main
;----------------------------------------------------------------------------
dispbufwr macro
movlr 2 ; start with bank 2
btfsc WREG,6 ; select the good bank
bsf BSR,4 ; based on 6th bit of index
andlw B'00111111' ; clear 2 MSB bits
addlw H'20' ; add $20 (data start at $20)
movwf FSR0 ; and use it as an index
movfp rdiv,INDF0 ; to store value
BANKSEL zone_main ; reset bank register
endm
;----------------------------------------------------------------------------
; dispbufrd : Read a value from the given display buffer cell
; On input : WREG = index (0 to 127)
; On output : WREG = value (0 to MAXPIXVAL)
; bank selected = zone_irq
;
; WARNING : Time critical routine ! In particular, execution time should
; be always exactly the same (if not, pixels won't be aligned
; anymore...)
;
; DURATION : 8 cycles (1.00 microsecond at 32MHz)
;----------------------------------------------------------------------------
dispbufrd macro
movlr 2 ; start with bank 2
btfsc WREG,6 ; select the good bank
bsf BSR,4 ; based on 6th bit of index
andlw B'00111111' ; clear 2 MSB bits
addlw H'20' ; add $20 (data start at $20)
movwf FSR0 ; and use it as an index
movfp INDF0,WREG ; to read value
BANKSEL zone_irq ; reset bank register
endm
;----------------------------------------------------------------------------
; intpowerlin : Calculate power spectrum for the complex value stored
; in RA and RB, scale it with a linear scale (result from 0
; to MAXPIXVAL) and store the result in RDIV
;----------------------------------------------------------------------------
; A=(A/2)^2+(B/2)^2 (divide by 2 to exclude overflow)
intpowerlin m_sta h1r ; m_sta(&h1r)
m_mvba ; m_mvba()
m_div2 ; m_div2()
m_mvab ; m_mvab()
call m_mult ; m_mult()
m_sta h2r ; m_sta(&h2r)
m_lda h1r ; m_lda(h1r)
m_div2 ; m_div2()
m_mvab ; m_mvab()
call m_mult ; m_mult()
m_ldb h2r ; m_ldb(h2r)
m_add ; m_add()
call m_scalelin ; m_scalelin()
return
;----------------------------------------------------------------------------
; intpowerlog : Calculate power spectrum for the complex value stored
; in RA and RB, scale it with a log scale (result from 0
; to MAXPIXVAL) and store the result in RDIV
;----------------------------------------------------------------------------
; A=(A/2)^2+(B/2)^2 (divide by 2 to exclude overflow)
intpowerlog m_sta h1r ; m_sta(&h1r)
m_mvba ; m_mvba()
m_div2 ; m_div2()
m_mvab ; m_mvab()
call m_mult ; m_mult()
m_sta h2r ; m_sta(&h2r)
m_lda h1r ; m_lda(h1r)
m_div2 ; m_div2()
m_mvab ; m_mvab()
call m_mult ; m_mult()
m_ldb h2r ; m_ldb(h2r)
m_add ; m_add()
call m_scalelog ; m_scalelog()
return
;----------------------------------------------------------------------------
; powerlin : Calculate power spectrum for the complex spectrum stored
; in "data", scale it with a linear scale (result from 0
; to MAXPIXVAL) and store the result in "dispbuf"
;
; Nota : last frequency (number 128) is discarted
;----------------------------------------------------------------------------
powerlin nop
;--------------> Special case of the first value (real)
clrf rdiv,F
m_ldai rdiv ; m_ldai(0)
m_ldbi rdiv ; m_ldbi(0)
call intpowerlin ; intpower()
movlw 0
dispbufwr ; dispbuf[0]=(unsigned char)rdiv
;--------------> General case
clrf i,F ; for (i=1;i<SLENGTH/2;i++) {
incf i,F
iloop4 nop
movfp i,WREG ; i2=(i<<1)
movwf i2
bcf ALUSTA,C
rlcf i2,F
m_ldai i2 ; m_ldai(i2)
incf i2,F ; m_ldbi(i2+1)
m_ldbi i2
call intpowerlin ; intpower();
movfp i,WREG ; dispbuf[i]=(unsigned char)rdiv
dispbufwr
inext4 incf i,F ; } next i
movlw D'128'
cpfseq i
goto iloop4
return
;----------------------------------------------------------------------------
; powerlog : Calculate power spectrum for the complex spectrum stored
; in "data", scale it with a log scale (result from 0
; to MAXPIXVAL) and store the result in "dispbuf"
;----------------------------------------------------------------------------
powerlog nop
;--------------> Special case of the first value (real)
clrf rdiv,F
m_ldai rdiv ; m_ldai(0)
m_ldbi rdiv ; m_ldbi(0)
call intpowerlog ; intpower()
movlw 0
dispbufwr ; dispbuf[0]=(unsigned char)rdiv
;--------------> General case
clrf i,F ; for (i=1;i<SLENGTH/2;i++) {
incf i,F
iloop5 nop
movfp i,WREG ; i2=(i<<1)
movwf i2
bcf ALUSTA,C
rlcf i2,F
m_ldai i2 ; m_ldai(i2)
incf i2,F ; m_ldbi(i2+1)
m_ldbi i2
call intpowerlog ; intpower();
movfp i,WREG ; dispbuf[i]=(unsigned char)rdiv
dispbufwr
inext5 incf i,F ; } next i
movlw D'128'
cpfseq i
goto iloop5
return
;============================================================================
; - END OF FILE -
;============================================================================
;============================================================================
; PROJECT : UPS'SPECTRUM
;
; FILE : IRQ.INC
;
; VERSION : 1.0
;
; DESCRIPTION :
;
; Handler of the timer0 interrupt, in charge of all real time tasks,
; mainly analog signal acquisition and software video generation...
;
; WARNING : These routines are VERY time critical, in particular for the
; video generation. Do not change the duration of any routine (even by adding
; or deleting only one instruction) without a deep analysis. Effects can go
; from misaligned pixels to... loss of video synchronisation.
; The main time dependencies are indicated in the source (see "PT" checkpoints
; and "RT" comments) but I'm not sure that the list is complete !
;
; Comment : Some of the routines may seems a little "bulk force" and
; excessively rom expensive, but think twice about the performances required
; before replacing everything by loop ! In fact, we only do manually what
; modern compilers do as part as their optimization phase... loop unrolling !
;
;============================================================================
; Developped & Copyrighted by Robert LACOSTE
;============================================================================
;----------------------------------------------------------------------------
; Management of analog acquisitions and generation of Hsync signal
;
; Check if an analog acquisition is requested by the main program.
; If so do the acquisition of 256 samples (one each 2 video scan lines,
; giving a sample rate of 31.5KHz/2=15.75KHz)
;
; Synchronisation with the main program is done through acq_request flag
; and num_sample register :
;
; Main program :
; - To launch a sampling, put acq_request=1 and reset num_sample
; - wait for acq_request to be back 0
;
; This interrupt routine :
; - if acq_request=0 => Nothing to do
; - if acq_request=1 => Launch acquisition and put acq_request=2
; - if acq_request=2 => Get result and store it in (num_sample)
; Increment num_sample
; If <256, put acq_request=1 (sampling period)
; else put acq_request=0
;
; The HSync signal is generated within this routine, insuring that its length
; is constant (=30 clock cycles) and its position fixed.
;
; Warning : The duration of this routine must be CONSTANT, whatever tests
; results are ! (now, its 37 cycles)
;
; Warning : on input, bankselect should be on zone_irq
;----------------------------------------------------------------------------
manage_adc macro
bsf PORTC,4 ; set RC4 (HSync signal active)
;--> RT constraint !!! From PT1, delay >= 0.94µS=8 instr (pre-HSync blanking)
; and fixed (whatever test & branch are executed)
;--> RT checkpoint PT2 (start of HSync signal)
;--> RT checkpoint PT0A (start of ADC management)
movlw 2 ; acq_request = 2 ?
cpfseq acq_request
goto adc_not2
;--> Acq_request=2
; save RA (because we must use a non banked memory)
movpf ra, tmpi
movpf ra+1, tmpi+1
; scale ADC value (0 to 653536 -> -8192 to +8192)
movlb 5
movpf ADRESL,ra+1 ; get ADC value
movpf ADRESH,ra ; and scale it to our floating format
bcf ALUSTA,C
rrcf ra,F ; divide by 4
rrcf ra+1,F
bcf ALUSTA,C
rrcf ra,F
rrcf ra+1,F
movlw H'20' ; substract H'2000'
subwf ra,F ; it's now from -1.0 to +1.0
; store ADC value in data(num_sample)
movlb 5 ; select register bank 5
movfp num_sample, WREG
movlr 0 ; start with bank 0
btfsc WREG,7 ; select the good bank
bsf BSR,5
btfsc WREG,6 ; based on 2 first bits of WREG
bsf BSR,4
bcf ALUSTA,C ; multiply by 2
rlcf WREG,1
bsf WREG,7 ; and set high bit (data start at $80)
movwf FSR0 ; and use it as an index
movfp ra,INDF0 ; to store msb value...
movlb 1
bcf PORTC,4 ; clear RC4 (HSync signal inactive)
;--> RT constraint !!! From PT2, delay = 3.77µS=30 instr (HSync duration)
; and fixed (whatever test & branch are executed)
;--> RT checkpoint PT3 (end of HSync signal)
incf FSR0,1
movfp ra+1,INDF0 ; ... and lsb value
BANKSEL zone_irq ; reset bank register
; increment num_sample and update aca_request
clrf acq_request,F ; acq_request=0
movlw 1
incfsz num_sample,F ; increment num_sample
movwf acq_request ; if <>0, acq_request=1
; restore RA
movfp tmpi, ra
movfp tmpi+1, ra+1
goto end_manage_adc
adc_not2 nop ; acq_request <> 2
nop
nop
nop
nop
nop
nop ; delay nop's in order to be in
nop ; synch with the switch case above
nop
nop
nop
nop
movlw 1
cpfseq acq_request ; acq_request=1 ?
goto adc_0
goto adc_1
;--> Acq_request=0
adc_0 nop ; acq=request is 0. Nothing to do
nop ; except wait...
nop
nop
nop
nop
nop
nop
movlb 1
bcf PORTC,4 ; clear RC4 (HSync signal inactive)
;--> RT constraint !!! From PT2, delay = 3.77µS=30 instr (HSync duration)
; and fixed (whatever test & branch are executed)
;--> RT checkpoint PT3 (end of HSync signal)
nop
nop
nop
nop
nop
nop
nop
nop
nop
goto end_manage_adc
;--> Acq_request=1
adc_1 nop
movlb 5 ; start ADC conversion
bsf ADCON0,GO
movlw 2 ; acq_request=2
movwf acq_request
nop
nop
movlb 1
bcf PORTC,4 ; clear RC4 (HSync signal inactive)
;--> RT constraint !!! From PT2, delay = 3.77µS=30 instr (HSync duration)
; and fixed (whatever test & branch are executed)
;--> RT checkpoint PT3 (end of HSync signal)
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop ; and wait
end_manage_adc nop
endm
;--> RT constraint !!! From PT0A, delay FIXED (now 42 instructions cycles)
;----------------------------------------------------------------------------
; Routine called on timer0 interrupt
;
; This routine is called at 31.5KHz (horizontal refresh rate for 640x350)
; and do the main real time tasks :
;
; - Registers saving
; - Analog acquisition
; - Video generation
; - Registers restoring
;
; Warning : Time from interrupt to video generation must be rigourously
; stable.
;----------------------------------------------------------------------------
it_timer movpf BSR,sv_bsr ; save BSR
;--> RT checkpoint PT0 (start of interrupt routine)
BANKSEL zone_irq
movpf ALUSTA,sv_alusta ; save ALUSTA
movwf sv_wreg ; save WREG
movpf FSR0,sv_fsr0 ; save FSR0
movlb 0
clrf PORTB,F ; switch video off
;--> RT checkpoint PT1 (start of horizontal blanking zone)
movlb 1
bsf PORTD,2 ; set RD2 (debug line : IRQ going on)
movlw high INITTIM ; reload timer
movwf tmpi
movlw low INITTIM
movwf TMR0L
movfp tmpi,TMR0H
manage_adc ; ADC management, 35 clock cycles
movlw 1 ; increment scan_line
addwf scan_line+1,F ; (rollback to 0 done in the last's
clrf WREG,W ; line sub-routine)
addwfc scan_line,F
movlb 0 ; select registers bank 0 for video
; Based on scan_line value (from 1 to 449), calculate
; the address of the line management routine
movlw low jump_table ; calculate jump address
addwf scan_line+1,W
movwf tmpi
movlw high jump_table
addwfc scan_line,W
movwf PCLATH
;--> RT constraint !!! From PT3 to first pixel display,
; delay > 1.89µS=15 instr (post HSync blanking)
movfp tmpi, PCL ; and jump to it !
; at the end of the scan line display, the called routine
; will jump back to resume_irq
resume_irq movlb 1
bcf PORTD,2 ; clear RD2 (debug line : IRQ going on)
BANKSEL zone_irq
movfp sv_alusta,ALUSTA ; restore ALUSTA
movfp sv_fsr0,FSR0 ; and FSR0
movfp sv_wreg,WREG ; and WREG
movfp sv_bsr,BSR ; and BSR
retfie ; return from interrupt
;--> RT constraint !!! From PT0, delay < 30µS=240 instr (Timer0 irq period)
; it lets 240-71=169 instructions for the scan_x routines
;----------------------------------------------------------------------------
; Jump address table
;
; For each scan line (1 to 449), calculated jump to the good management
; routine, depending on the scan line number
;----------------------------------------------------------------------------
jump_table goto scan_blanking ; scan 000, should not occur
goto scan_vsynch_on ; scan 001, switch on VSynch
goto scan_blanking ; scan 002, vertical blanking
goto scan_vsynch_off ; scan 003, switch off VSynch
goto scan_blanking ; scan 004, vertical blanking
goto scan_blanking ; scan 005, vertical blanking
goto scan_blanking ; scan 006, vertical blanking
goto scan_blanking ; scan 007, vertical blanking
goto scan_blanking ; scan 008, vertical blanking
goto scan_blanking ; scan 009, vertical blanking
goto scan_blanking ; scan 010, vertical blanking
goto scan_blanking ; scan 011, vertical blanking
goto scan_blanking ; scan 012, vertical blanking
goto scan_blanking ; scan 013, vertical blanking
goto scan_blanking ; scan 014, vertical blanking
goto scan_blanking ; scan 015, vertical blanking
goto scan_blanking ; scan 016, vertical blanking
goto scan_blanking ; scan 017, vertical blanking
goto scan_blanking ; scan 018, vertical blanking
goto scan_blanking ; scan 019, vertical blanking
goto scan_blanking ; scan 020, vertical blanking
goto scan_blanking ; scan 021, vertical blanking
goto scan_blanking ; scan 022, vertical blanking
goto scan_blanking ; scan 023, vertical blanking
goto scan_blanking ; scan 024, vertical blanking
goto scan_blanking ; scan 025, vertical blanking
goto scan_blanking ; scan 026, vertical blanking
goto scan_blanking ; scan 027, vertical blanking
goto scan_blanking ; scan 028, vertical blanking
goto scan_blanking ; scan 029, vertical blanking
goto scan_blanking ; scan 030, vertical blanking
goto scan_blanking ; scan 031, vertical blanking
goto scan_blanking ; scan 032, vertical blanking
goto scan_blanking ; scan 033, vertical blanking
goto scan_blanking ; scan 034, vertical blanking
goto scan_blanking ; scan 035, vertical blanking
goto scan_blanking ; scan 036, vertical blanking
goto scan_blanking ; scan 037, vertical blanking
goto scan_blanking ; scan 038, vertical blanking
goto scan_blanking ; scan 039, vertical blanking
goto scan_blanking ; scan 040, vertical blanking
goto scan_blanking ; scan 041, vertical blanking
goto scan_blanking ; scan 042, vertical blanking
goto scan_blanking ; scan 043, vertical blanking
goto scan_blanking ; scan 044, vertical blanking
goto scan_blanking ; scan 045, vertical blanking
goto scan_blanking ; scan 046, vertical blanking
goto scan_blanking ; scan 047, vertical blanking
goto scan_blanking ; scan 048, vertical blanking
goto scan_blanking ; scan 049, vertical blanking
goto scan_blanking ; scan 050, vertical blanking
goto scan_blanking ; scan 051, vertical blanking
goto scan_blanking ; scan 052, vertical blanking
goto scan_blanking ; scan 053, vertical blanking
goto scan_blanking ; scan 054, vertical blanking
goto scan_blanking ; scan 055, vertical blanking
goto scan_blanking ; scan 056, vertical blanking
goto scan_blanking ; scan 057, vertical blanking
goto scan_blanking ; scan 058, vertical blanking
goto scan_blanking ; scan 059, vertical blanking
goto scan_blanking ; scan 060, vertical blanking
goto scan_blanking ; scan 061, vertical blanking
goto scan_empty ; scan 062 (sl 000), empty line
goto scan_empty ; scan 063 (sl 001), empty line
goto scan_empty ; scan 064 (sl 002), empty line
goto scan_empty ; scan 065 (sl 003), empty line
goto scan_empty ; scan 066 (sl 004), empty line
goto scan_empty ; scan 067 (sl 005), empty line
goto scan_empty ; scan 068 (sl 006), empty line
goto scan_empty ; scan 069 (sl 007), empty line
goto scan_empty ; scan 070 (sl 008), empty line
goto scan_empty ; scan 071 (sl 009), empty line
goto scan_empty ; scan 072 (sl 010), empty line
goto scan_empty ; scan 073 (sl 011), empty line
goto scan_empty ; scan 074 (sl 012), empty line
goto scan_empty ; scan 075 (sl 013), empty line
goto scan_empty ; scan 076 (sl 014), empty line
goto scan_empty ; scan 077 (sl 015), empty line
goto scan_empty ; scan 078 (sl 016), empty line
goto scan_empty ; scan 079 (sl 017), empty line
goto scan_empty ; scan 080 (sl 018), empty line
goto scan_empty ; scan 081 (sl 019), empty line
goto scan_empty ; scan 082 (sl 020), empty line
goto scan_empty ; scan 083 (sl 021), empty line
goto scan_empty ; scan 084 (sl 022), empty line
goto scan_hscalelong ; scan 085 (sl 023), h.scale long sep
goto scan_hscalelong ; scan 086 (sl 024), h.scale long sep
goto scan_hscalelong ; scan 087 (sl 025), h.scale long sep
goto scan_hscalelong ; scan 088 (sl 026), h.scale long sep
goto scan_hscalelong ; scan 089 (sl 027), h.scale long sep
goto scan_hscalelong ; scan 090 (sl 028), h.scale long sep
goto scan_hscalelong ; scan 091 (sl 029), h.scale long sep
goto scan_hscalelong ; scan 092 (sl 030), h.scale long sep
goto scan_hscaleshort ; scan 093 (sl 031), h.scale short sep
goto scan_hscaleshort ; scan 094 (sl 032), h.scale short sep
goto scan_hscaleshort ; scan 095 (sl 033), h.scale short sep
goto scan_hscaleshort ; scan 096 (sl 034), h.scale short sep
goto scan_hscaleshort ; scan 097 (sl 035), h.scale short sep
goto scan_hscaleshort ; scan 098 (sl 036), h.scale short sep
goto scan_hscaleshort ; scan 099 (sl 037), h.scale short sep
goto scan_empty ; scan 100 (sl 038), empty line
goto scan_empty ; scan 101 (sl 039), empty line
goto scan_empty ; scan 102 (sl 040), empty line
goto scan_hscaleline ; scan 103 (sl 041), h. plain line
goto scan_sepline ; scan 104 (sl 042), frequencies sep.
goto scan_freqline ; scan 105 (sl 043), freq 001
goto scan_sepline ; scan 106 (sl 044), frequencies sep.
goto scan_freqline ; scan 107 (sl 045), freq 002
goto scan_sepline ; scan 108 (sl 046), frequencies sep.
goto scan_freqline ; scan 109 (sl 047), freq 003
goto scan_sepline ; scan 110 (sl 048), frequencies sep.
goto scan_freqline ; scan 111 (sl 049), freq 004
goto scan_sepline ; scan 112 (sl 050), frequencies sep.
goto scan_freqline ; scan 113 (sl 051), freq 005
goto scan_sepline ; scan 114 (sl 052), frequencies sep.
goto scan_freqline ; scan 115 (sl 053), freq 006
goto scan_sepline ; scan 116 (sl 054), frequencies sep.
goto scan_freqline ; scan 117 (sl 055), freq 007
goto scan_sepline ; scan 118 (sl 056), frequencies sep.
goto scan_freqline ; scan 119 (sl 057), freq 008
goto scan_sepline ; scan 120 (sl 058), frequencies sep.
goto scan_freqline ; scan 121 (sl 059), freq 009
goto scan_sepline ; scan 122 (sl 060), frequencies sep.
goto scan_freqline ; scan 123 (sl 061), freq 010
goto scan_sepline ; scan 124 (sl 062), frequencies sep.
goto scan_freqline ; scan 125 (sl 063), freq 011
goto scan_sepline ; scan 126 (sl 064), frequencies sep.
goto scan_freqline ; scan 127 (sl 065), freq 012
goto scan_sepline ; scan 128 (sl 066), frequencies sep.
goto scan_freqline ; scan 129 (sl 067), freq 013
goto scan_sepline ; scan 130 (sl 068), frequencies sep.
goto scan_freqline ; scan 131 (sl 069), freq 014
goto scan_sepline ; scan 132 (sl 070), frequencies sep.
goto scan_freqline ; scan 133 (sl 071), freq 015
goto scan_sepline ; scan 134 (sl 072), frequencies sep.
goto scan_freqline ; scan 135 (sl 073), freq 016
goto scan_vscaleshort ; scan 136 (sl 074), v.scale short s.
goto scan_freqline ; scan 137 (sl 075), freq 017
goto scan_sepline ; scan 138 (sl 076), frequencies sep.
goto scan_freqline ; scan 139 (sl 077), freq 018
goto scan_sepline ; scan 140 (sl 078), frequencies sep.
goto scan_freqline ; scan 141 (sl 079), freq 019
goto scan_sepline ; scan 142 (sl 080), frequencies sep.
goto scan_freqline ; scan 143 (sl 081), freq 020
goto scan_sepline ; scan 144 (sl 082), frequencies sep.
goto scan_freqline ; scan 145 (sl 083), freq 021
goto scan_sepline ; scan 146 (sl 084), frequencies sep.
goto scan_freqline ; scan 147 (sl 085), freq 022
goto scan_sepline ; scan 148 (sl 086), frequencies sep.
goto scan_freqline ; scan 149 (sl 087), freq 023
goto scan_sepline ; scan 150 (sl 088), frequencies sep.
goto scan_freqline ; scan 151 (sl 089), freq 024
goto scan_sepline ; scan 152 (sl 090), frequencies sep.
goto scan_freqline ; scan 153 (sl 091), freq 025
goto scan_sepline ; scan 154 (sl 092), frequencies sep.
goto scan_freqline ; scan 155 (sl 093), freq 026
goto scan_sepline ; scan 156 (sl 094), frequencies sep.
goto scan_freqline ; scan 157 (sl 095), freq 027
goto scan_sepline ; scan 158 (sl 096), frequencies sep.
goto scan_freqline ; scan 159 (sl 097), freq 028
goto scan_sepline ; scan 160 (sl 098), frequencies sep.
goto scan_freqline ; scan 161 (sl 099), freq 029
goto scan_sepline ; scan 162 (sl 100), frequencies sep.
goto scan_freqline ; scan 163 (sl 101), freq 030
goto scan_sepline ; scan 164 (sl 102), frequencies sep.
goto scan_freqline ; scan 165 (sl 103), freq 031
goto scan_sepline ; scan 166 (sl 104), frequencies sep.
goto scan_freqline ; scan 167 (sl 105), freq 032
goto scan_vscaleshort ; scan 168 (sl 106), v.scale short s.
goto scan_freqline ; scan 169 (sl 107), freq 033
goto scan_sepline ; scan 170 (sl 108), frequencies sep.
goto scan_freqline ; scan 171 (sl 109), freq 034
goto scan_sepline ; scan 172 (sl 110), frequencies sep.
goto scan_freqline ; scan 173 (sl 111), freq 035
goto scan_sepline ; scan 174 (sl 112), frequencies sep.
goto scan_freqline ; scan 175 (sl 113), freq 036
goto scan_sepline ; scan 176 (sl 114), frequencies sep.
goto scan_freqline ; scan 177 (sl 115), freq 037
goto scan_sepline ; scan 178 (sl 116), frequencies sep.
goto scan_freqline ; scan 179 (sl 117), freq 038
goto scan_sepline ; scan 180 (sl 118), frequencies sep.
goto scan_freqline ; scan 181 (sl 119), freq 039
goto scan_sepline ; scan 182 (sl 120), frequencies sep.
goto scan_freqline ; scan 183 (sl 121), freq 040
goto scan_sepline ; scan 184 (sl 122), frequencies sep.
goto scan_freqline ; scan 185 (sl 123), freq 041
goto scan_sepline ; scan 186 (sl 124), frequencies sep.
goto scan_freqline ; scan 187 (sl 125), freq 042
goto scan_sepline ; scan 188 (sl 126), frequencies sep.
goto scan_freqline ; scan 189 (sl 127), freq 043
goto scan_sepline ; scan 190 (sl 128), frequencies sep.
goto scan_freqline ; scan 191 (sl 129), freq 044
goto scan_sepline ; scan 192 (sl 130), frequencies sep.
goto scan_freqline ; scan 193 (sl 131), freq 045
goto scan_sepline ; scan 194 (sl 132), frequencies sep.
goto scan_freqline ; scan 195 (sl 133), freq 046
goto scan_sepline ; scan 196 (sl 134), frequencies sep.
goto scan_freqline ; scan 197 (sl 135), freq 047
goto scan_sepline ; scan 198 (sl 136), frequencies sep.
goto scan_freqline ; scan 199 (sl 137), freq 048
goto scan_vscaleshort ; scan 200 (sl 138), v.scale short s.
goto scan_freqline ; scan 201 (sl 139), freq 049
goto scan_sepline ; scan 202 (sl 140), frequencies sep.
goto scan_freqline ; scan 203 (sl 141), freq 050
goto scan_sepline ; scan 204 (sl 142), frequencies sep.
goto scan_freqline ; scan 205 (sl 143), freq 051
goto scan_sepline ; scan 206 (sl 144), frequencies sep.
goto scan_freqline ; scan 207 (sl 145), freq 052
goto scan_sepline ; scan 208 (sl 146), frequencies sep.
goto scan_freqline ; scan 209 (sl 147), freq 053
goto scan_sepline ; scan 210 (sl 148), frequencies sep.
goto scan_freqline ; scan 211 (sl 149), freq 054
goto scan_sepline ; scan 212 (sl 150), frequencies sep.
goto scan_freqline ; scan 213 (sl 151), freq 055
goto scan_sepline ; scan 214 (sl 152), frequencies sep.
goto scan_freqline ; scan 215 (sl 153), freq 056
goto scan_sepline ; scan 216 (sl 154), frequencies sep.
goto scan_freqline ; scan 217 (sl 155), freq 057
goto scan_sepline ; scan 218 (sl 156), frequencies sep.
goto scan_freqline ; scan 219 (sl 157), freq 058
goto scan_sepline ; scan 220 (sl 158), frequencies sep.
goto scan_freqline ; scan 221 (sl 159), freq 059
goto scan_sepline ; scan 222 (sl 160), frequencies sep.
goto scan_freqline ; scan 223 (sl 161), freq 060
goto scan_sepline ; scan 224 (sl 162), frequencies sep.
goto scan_freqline ; scan 225 (sl 163), freq 061
goto scan_sepline ; scan 226 (sl 164), frequencies sep.
goto scan_freqline ; scan 227 (sl 165), freq 062
goto scan_sepline ; scan 228 (sl 166), frequencies sep.
goto scan_freqline ; scan 229 (sl 167), freq 063
goto scan_sepline ; scan 230 (sl 168), frequencies sep.
goto scan_freqline ; scan 231 (sl 169), freq 064
goto scan_vscaleshort ; scan 232 (sl 170), v.scale short s.
goto scan_freqline ; scan 233 (sl 171), freq 065
goto scan_sepline ; scan 234 (sl 172), frequencies sep.
goto scan_freqline ; scan 235 (sl 173), freq 066
goto scan_sepline ; scan 236 (sl 174), frequencies sep.
goto scan_freqline ; scan 237 (sl 175), freq 067
goto scan_sepline ; scan 238 (sl 176), frequencies sep.
goto scan_freqline ; scan 239 (sl 177), freq 068
goto scan_sepline ; scan 240 (sl 178), frequencies sep.
goto scan_freqline ; scan 241 (sl 179), freq 069
goto scan_sepline ; scan 242 (sl 180), frequencies sep.
goto scan_freqline ; scan 243 (sl 181), freq 070
goto scan_sepline ; scan 244 (sl 182), frequencies sep.
goto scan_freqline ; scan 245 (sl 183), freq 071
goto scan_sepline ; scan 246 (sl 184), frequencies sep.
goto scan_freqline ; scan 247 (sl 185), freq 072
goto scan_sepline ; scan 248 (sl 186), frequencies sep.
goto scan_freqline ; scan 249 (sl 187), freq 073
goto scan_sepline ; scan 250 (sl 188), frequencies sep.
goto scan_freqline ; scan 251 (sl 189), freq 074
goto scan_sepline ; scan 252 (sl 190), frequencies sep.
goto scan_freqline ; scan 253 (sl 191), freq 075
goto scan_sepline ; scan 254 (sl 192), frequencies sep.
goto scan_freqline ; scan 255 (sl 193), freq 076
goto scan_sepline ; scan 256 (sl 194), frequencies sep.
goto scan_freqline ; scan 257 (sl 195), freq 077
goto scan_sepline ; scan 258 (sl 196), frequencies sep.
goto scan_freqline ; scan 259 (sl 197), freq 078
goto scan_sepline ; scan 260 (sl 198), frequencies sep.
goto scan_freqline ; scan 261 (sl 199), freq 079
goto scan_sepline ; scan 262 (sl 200), frequencies sep.
goto scan_freqline ; scan 263 (sl 201), freq 080
goto scan_vscalelong ; scan 264 (sl 202), v.scale long s.
goto scan_freqline ; scan 265 (sl 203), freq 081
goto scan_sepline ; scan 266 (sl 204), frequencies sep.
goto scan_freqline ; scan 267 (sl 205), freq 082
goto scan_sepline ; scan 268 (sl 206), frequencies sep.
goto scan_freqline ; scan 269 (sl 207), freq 083
goto scan_sepline ; scan 270 (sl 208), frequencies sep.
goto scan_freqline ; scan 271 (sl 209), freq 084
goto scan_sepline ; scan 272 (sl 210), frequencies sep.
goto scan_freqline ; scan 273 (sl 211), freq 085
goto scan_sepline ; scan 274 (sl 212), frequencies sep.
goto scan_freqline ; scan 275 (sl 213), freq 086
goto scan_sepline ; scan 276 (sl 214), frequencies sep.
goto scan_freqline ; scan 277 (sl 215), freq 087
goto scan_sepline ; scan 278 (sl 216), frequencies sep.
goto scan_freqline ; scan 279 (sl 217), freq 088
goto scan_sepline ; scan 280 (sl 218), frequencies sep.
goto scan_freqline ; scan 281 (sl 219), freq 089
goto scan_sepline ; scan 282 (sl 220), frequencies sep.
goto scan_freqline ; scan 283 (sl 221), freq 090
goto scan_sepline ; scan 284 (sl 222), frequencies sep.
goto scan_freqline ; scan 285 (sl 223), freq 091
goto scan_sepline ; scan 286 (sl 224), frequencies sep.
goto scan_freqline ; scan 287 (sl 225), freq 092
goto scan_sepline ; scan 288 (sl 226), frequencies sep.
goto scan_freqline ; scan 289 (sl 227), freq 093
goto scan_sepline ; scan 290 (sl 228), frequencies sep.
goto scan_freqline ; scan 291 (sl 229), freq 094
goto scan_sepline ; scan 292 (sl 230), frequencies sep.
goto scan_freqline ; scan 293 (sl 231), freq 095
goto scan_sepline ; scan 294 (sl 232), frequencies sep.
goto scan_freqline ; scan 295 (sl 233), freq 096
goto scan_vscaleshort ; scan 296 (sl 234), v.scale short s.
goto scan_freqline ; scan 297 (sl 235), freq 097
goto scan_sepline ; scan 298 (sl 236), frequencies sep.
goto scan_freqline ; scan 299 (sl 237), freq 098
goto scan_sepline ; scan 300 (sl 238), frequencies sep.
goto scan_freqline ; scan 301 (sl 239), freq 099
goto scan_sepline ; scan 302 (sl 240), frequencies sep.
goto scan_freqline ; scan 303 (sl 241), freq 100
goto scan_sepline ; scan 304 (sl 242), frequencies sep.
goto scan_freqline ; scan 305 (sl 243), freq 101
goto scan_sepline ; scan 306 (sl 244), frequencies sep.
goto scan_freqline ; scan 307 (sl 245), freq 102
goto scan_sepline ; scan 308 (sl 246), frequencies sep.
goto scan_freqline ; scan 309 (sl 247), freq 103
goto scan_sepline ; scan 310 (sl 248), frequencies sep.
goto scan_freqline ; scan 311 (sl 249), freq 104
goto scan_sepline ; scan 312 (sl 250), frequencies sep.
goto scan_freqline ; scan 313 (sl 251), freq 105
goto scan_sepline ; scan 314 (sl 252), frequencies sep.
goto scan_freqline ; scan 315 (sl 253), freq 106
goto scan_sepline ; scan 316 (sl 254), frequencies sep.
goto scan_freqline ; scan 317 (sl 255), freq 107
goto scan_sepline ; scan 318 (sl 256), frequencies sep.
goto scan_freqline ; scan 319 (sl 257), freq 108
goto scan_sepline ; scan 320 (sl 258), frequencies sep.
goto scan_freqline ; scan 321 (sl 259), freq 109
goto scan_sepline ; scan 322 (sl 260), frequencies sep.
goto scan_freqline ; scan 323 (sl 261), freq 110
goto scan_sepline ; scan 324 (sl 262), frequencies sep.
goto scan_freqline ; scan 325 (sl 263), freq 111
goto scan_sepline ; scan 326 (sl 264), frequencies sep.
goto scan_freqline ; scan 327 (sl 265), freq 112
goto scan_vscaleshort ; scan 328 (sl 266), v.scale short s.
goto scan_freqline ; scan 329 (sl 267), freq 113
goto scan_sepline ; scan 330 (sl 268), frequencies sep.
goto scan_freqline ; scan 331 (sl 269), freq 114
goto scan_sepline ; scan 332 (sl 270), frequencies sep.
goto scan_freqline ; scan 333 (sl 271), freq 115
goto scan_sepline ; scan 334 (sl 272), frequencies sep.
goto scan_freqline ; scan 335 (sl 273), freq 116
goto scan_sepline ; scan 336 (sl 274), frequencies sep.
goto scan_freqline ; scan 337 (sl 275), freq 117
goto scan_sepline ; scan 338 (sl 276), frequencies sep.
goto scan_freqline ; scan 339 (sl 277), freq 118
goto scan_sepline ; scan 340 (sl 278), frequencies sep.
goto scan_freqline ; scan 341 (sl 279), freq 119
goto scan_sepline ; scan 342 (sl 280), frequencies sep.
goto scan_freqline ; scan 343 (sl 281), freq 120
goto scan_sepline ; scan 344 (sl 282), frequencies sep.
goto scan_freqline ; scan 345 (sl 283), freq 121
goto scan_sepline ; scan 346 (sl 284), frequencies sep.
goto scan_freqline ; scan 347 (sl 285), freq 122
goto scan_sepline ; scan 348 (sl 286), frequencies sep.
goto scan_freqline ; scan 349 (sl 287), freq 123
goto scan_sepline ; scan 350 (sl 288), frequencies sep.
goto scan_freqline ; scan 351 (sl 289), freq 124
goto scan_sepline ; scan 352 (sl 290), frequencies sep.
goto scan_freqline ; scan 353 (sl 291), freq 125
goto scan_sepline ; scan 354 (sl 292), frequencies sep.
goto scan_freqline ; scan 355 (sl 293), freq 126
goto scan_sepline ; scan 356 (sl 294), frequencies sep.
goto scan_freqline ; scan 357 (sl 295), freq 127
goto scan_sepline ; scan 358 (sl 296), frequencies sep.
goto scan_empty ; scan 359 (sl 297), empty line
goto scan_empty ; scan 360 (sl 298), empty line
goto scan_empty ; scan 361 (sl 299), empty line
goto scan_empty ; scan 362 (sl 300), empty line
goto scan_empty ; scan 363 (sl 301), empty line
goto scan_empty ; scan 364 (sl 302), empty line
goto scan_empty ; scan 365 (sl 303), empty line
goto scan_empty ; scan 366 (sl 304), empty line
goto scan_empty ; scan 367 (sl 305), empty line
goto scan_empty ; scan 368 (sl 306), empty line
goto scan_empty ; scan 369 (sl 307), empty line
goto scan_empty ; scan 370 (sl 308), empty line
goto scan_empty ; scan 371 (sl 309), empty line
goto scan_empty ; scan 372 (sl 310), empty line
goto scan_empty ; scan 373 (sl 311), empty line
goto scan_empty ; scan 374 (sl 312), empty line
goto scan_empty ; scan 375 (sl 313), empty line
goto scan_empty ; scan 376 (sl 314), empty line
goto scan_empty ; scan 377 (sl 315), empty line
goto scan_empty ; scan 378 (sl 316), empty line
goto scan_empty ; scan 379 (sl 317), empty line
goto scan_empty ; scan 380 (sl 318), empty line
goto scan_empty ; scan 381 (sl 319), empty line
goto scan_empty ; scan 382 (sl 320), empty line
goto scan_empty ; scan 383 (sl 321), empty line
goto scan_empty ; scan 384 (sl 322), empty line
goto scan_empty ; scan 385 (sl 323), empty line
goto scan_empty ; scan 386 (sl 324), empty line
goto scan_titlempty ; scan 387 (sl 325), empty title
goto scan_titlempty ; scan 388 (sl 326), empty title
goto scan_titlempty ; scan 389 (sl 327), empty title
goto scan_titlempty ; scan 390 (sl 328), empty title
goto scan_titlempty ; scan 391 (sl 329), empty title
goto scan_titlempty ; scan 392 (sl 330), empty title
goto scan_title0 ; scan 393 (sl 331), title line 0
goto scan_title0 ; scan 394 (sl 332), title line 0
goto scan_title1 ; scan 395 (sl 333), title line 1
goto scan_title1 ; scan 396 (sl 334), title line 1
goto scan_title2 ; scan 397 (sl 335), title line 2
goto scan_title2 ; scan 398 (sl 336), title line 2
goto scan_title3 ; scan 399 (sl 337), title line 3
goto scan_title3 ; scan 400 (sl 338), title line 3
goto scan_title4 ; scan 401 (sl 339), title line 4
goto scan_title4 ; scan 402 (sl 340), title line 4
goto scan_title5 ; scan 403 (sl 341), title line 5
goto scan_title5 ; scan 404 (sl 342), title line 5
goto scan_title6 ; scan 405 (sl 343), title line 6
goto scan_title6 ; scan 406 (sl 344), title line 6
goto scan_titlempty ; scan 407 (sl 345), empty title
goto scan_titlempty ; scan 408 (sl 346), empty title
goto scan_titlempty ; scan 409 (sl 347), empty title
goto scan_titlempty ; scan 410 (sl 348), empty title
goto scan_titlempty ; scan 411 (sl 349), empty title
goto scan_blanking ; scan 412, vertical blanking
goto scan_blanking ; scan 413, vertical blanking
goto scan_blanking ; scan 414, vertical blanking
goto scan_blanking ; scan 415, vertical blanking
goto scan_blanking ; scan 416, vertical blanking
goto scan_blanking ; scan 417, vertical blanking
goto scan_blanking ; scan 418, vertical blanking
goto scan_blanking ; scan 419, vertical blanking
goto scan_blanking ; scan 420, vertical blanking
goto scan_blanking ; scan 421, vertical blanking
goto scan_blanking ; scan 422, vertical blanking
goto scan_blanking ; scan 423, vertical blanking
goto scan_blanking ; scan 424, vertical blanking
goto scan_blanking ; scan 425, vertical blanking
goto scan_blanking ; scan 426, vertical blanking
goto scan_blanking ; scan 427, vertical blanking
goto scan_blanking ; scan 428, vertical blanking
goto scan_blanking ; scan 429, vertical blanking
goto scan_blanking ; scan 430, vertical blanking
goto scan_blanking ; scan 431, vertical blanking
goto scan_blanking ; scan 432, vertical blanking
goto scan_blanking ; scan 433, vertical blanking
goto scan_blanking ; scan 434, vertical blanking
goto scan_blanking ; scan 435, vertical blanking
goto scan_blanking ; scan 436, vertical blanking
goto scan_blanking ; scan 437, vertical blanking
goto scan_blanking ; scan 438, vertical blanking
goto scan_blanking ; scan 439, vertical blanking
goto scan_blanking ; scan 440, vertical blanking
goto scan_blanking ; scan 441, vertical blanking
goto scan_blanking ; scan 442, vertical blanking
goto scan_blanking ; scan 443, vertical blanking
goto scan_blanking ; scan 444, vertical blanking
goto scan_blanking ; scan 445, vertical blanking
goto scan_blanking ; scan 446, vertical blanking
goto scan_blanking ; scan 447, vertical blanking
goto scan_blanking ; scan 448, vertical blanking
goto scan_rstscanl ; scan 449, reset scan_line
;----------------------------------------------------------------------------
; Soft generation of a vertical blanking line
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_blanking goto resume_irq ; Nothing to do as video already off !
;----------------------------------------------------------------------------
; Soft generation of a vertical blanking line with switch on of Vsynch
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_vsynch_on movlb 1
bcf PORTC,6 ; RC6=0 (Vsynch active)
incf frame_num,F ; increment frame number
goto resume_irq
;----------------------------------------------------------------------------
; Soft generation of a vertical blanking line with switch off of Vsynch
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_vsynch_off movlb 1
bsf PORTC,6 ; RC6=1 (Vsynch inactive)
goto resume_irq
;----------------------------------------------------------------------------
; Soft generation of a blank screen line (background color)
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_empty movlb 0
movlw BKG_COLOR
movwf PORTB ; set background color
goto resume_irq
;----------------------------------------------------------------------------
; Soft generation of a frequency line
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_freqline movlb 0
movlw BKG_COLOR
movwf PORTB ; set background color
movlw D'103' ; calculate frequency number
subwf scan_line+1,W ; (=(scan_line-103)/2)
movwf tmpi
bcf ALUSTA,C
rrcf tmpi,W
dispbufrd ; read display buffer value (8 cycles)
andlw B'01111111' ; be sure it is <128
movwf tmpi ; and store it in tmpi
sublw low endfreqline ; calculate jump address
movwf tmpi2+1 ; (endfreqline-freq value)
movlw high endfreqline ; store msb in PCLATH and lsb in tmpi2+1
movwf tmpi2
clrf WREG,W
subwfb tmpi2,F
movfp tmpi2,PCLATH
movlw BKG_COLOR
movwf tmpcolor
movlw SLINE_COLOR
movwf PORTB ; draw vertical line
movfp tmpcolor,PORTB ; and return to background color
clrf WREG,W
cpfsgt tmpi ; if value 0
goto resume_irq ; return
movlw FREQ_COLOR ; else
movwf PORTB ; draw frequency line
movfp tmpi2+1,PCL ; and jump to precalculated address
nop
nop
start_wait128 nop
nop ; 128 nop's
nop ; in order to have a cycle per cycle
nop ; delay, a jump is done to the
nop ; precalculated nop in this list !
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
endfreqline movlw BKG_COLOR
movwf PORTB ; and return to background color
goto resume_irq
;----------------------------------------------------------------------------
; Soft generation of a separating line between 2 frequency lines
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_sepline movlb 0
movlw BKG_COLOR
movwf PORTB ; set background color
nop
nop
nop ; serie of nop's in order to
nop ; be sure that the vertical
nop ; line will be aligned with
; the one for frequency lines !
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
movlw BKG_COLOR
movwf tmpcolor
movlw SLINE_COLOR
movwf PORTB ; draw vertical line
movfp tmpcolor,PORTB ; and return to background color
goto resume_irq
;----------------------------------------------------------------------------
; Soft generation of a separating line with a "short" scale indicator
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_vscaleshort movlb 0
movlw BKG_COLOR
movwf PORTB ; set background color
nop
nop
nop ; serie of nop's in order to
nop ; be sure that the vertical
nop ; line will be aligned with
; the one for frequency lines !
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
movlw SHORTS_COLOR
movwf PORTB ; draw the small indicator
nop
movlw BKG_COLOR
movwf tmpcolor
movwf PORTB ; return to background color
movlw SLINE_COLOR
movwf PORTB ; draw vertical line
movfp tmpcolor,PORTB ; and return to background color
goto resume_irq
;----------------------------------------------------------------------------
; Soft generation of a separating line with a "long" scale indicator
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_vscalelong movlb 0
movlw BKG_COLOR
movwf PORTB ; set background color
nop
nop
nop ; serie of nop's in order to
nop ; be sure that the vertical
nop ; line will be aligned with
; the one for frequency lines !
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
movlw LONGS_COLOR
movwf PORTB ; draw the long indicator
nop
nop
nop
movlw BKG_COLOR
movwf tmpcolor
movwf PORTB ; return to background color
movlw SLINE_COLOR
movwf PORTB ; draw vertical line
movfp tmpcolor,PORTB ; and return to background color
goto resume_irq
;----------------------------------------------------------------------------
; Soft generation of the horizontal scale "long" steps
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_hscalelong movlb 0
movlw BKG_COLOR
movwf PORTB ; set background color
movwf tmpi2 ; save color for background
movlw LONGS_COLOR
movwf tmpi ; save color for long steps drawing
movlw BKG_COLOR
movwf tmpi+1 ; save color for short steps drawing
movlb 0
btfsc PORTB,7 ; log mode ?
goto scale_lin_m ; if not, draw lin scale
goto scale_log_m ; else draw log scale
scale_lin_m nop ; time correction for btfsc
scale_lin_m2 nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
movfp tmpi,PORTB ;col 0 -> long
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 10
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;-> short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col20
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col30
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 40
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 50
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi,PORTB ;col 60->long
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 70
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 80
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 90
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 100
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 110
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi,PORTB ;col 120->long
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 127
goto resume_irq
scale_log_m nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
movfp tmpi,PORTB ;col 0->long
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 10
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col20
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col30
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi,PORTB ;col 40->long
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 50
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 60
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 70
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi,PORTB ;col 80->long
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 90
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 100
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 110
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi+1,PORTB ;->short
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi,PORTB ;col 120->long
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB
movfp tmpi2,PORTB ;col 127
goto resume_irq
;----------------------------------------------------------------------------
; Soft generation of the horizontal scale "short" steps
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_hscaleshort movlb 0
movlw BKG_COLOR
movwf PORTB ; set background color
movwf tmpi2 ; save color for background
movlw LONGS_COLOR
movwf tmpi ; save color for long steps drawing
movlw SHORTS_COLOR
movwf tmpi+1 ; save color for short steps drawing
movlb 0
btfsc PORTB,7 ; log mode ?
goto scale_lin_m ; if not, draw lin scale
goto scale_log_m ; else draw log scale
;----------------------------------------------------------------------------
; Soft generation of the horizontal scale plain line
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_hscaleline movlb 0
movlw BKG_COLOR
movwf PORTB ; set background color
nop
nop
nop ; serie of nop's in order to
nop ; be sure that the vertical
nop ; line will be aligned with
; the one for frequency lines !
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
movlw SLINE_COLOR
movwf PORTB ; draw vertical line
goto start_wait128 ; and wait for end of active line
;----------------------------------------------------------------------------
; Soft generation of a blank screen line (background title color)
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_titlempty movlb 0
movlw BKGTITLE_COLOR
movwf PORTB ; set background color
goto resume_irq
;----------------------------------------------------------------------------
; Soft generation of the title lines
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
; Title content :
; * **** ***** *** * *** ***** ***** *** ***** **** * * * * *
; *** * * * * * * * * * * * * * * * * * * ** ** ***
; ***** * * * * * * * * * * * * * * * * * *****
; ******* **** * * *** ***** *** * * **** * * * * *******
; ********* * * * * * * * * * * * * * * *********
; *********** * * * * * * * * * * * * * * * * * ***********
; ************* * ***** *** *** * ***** *** * * * *** * * *************
;
; Hold sign content :
;
; * * * *
; * * * *
; * ***** *
; * * * *
; * * * *
;
; The following routines display each line of the previous strings, scan line
; per scan line. No other way to do cycle per cycle video generation (of course
; it's possible to implement a character set map, but not useful in this case)
;
; Of course the following routines where generated automaticaly ! (seems like a
; compiler job, no ?)
; Generation of title0
scan_title0 movlb 0
movlw BKGTITLE_COLOR
movwf PORTB ;set background color
movlw TITLE_COLOR ;store title color
movwf tmpi+1 ;in tmpi+1
movlw BKGTITLE_COLOR ;and background color
movwf tmpi ;in tmpi
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB ;reset to background color
goto resume_irq ;and return
; Generation of title1
scan_title1 movlb 0
movlw BKGTITLE_COLOR
movwf PORTB ;set background color
movlw TITLE_COLOR ;store title color
movwf tmpi+1 ;in tmpi+1
movlw BKGTITLE_COLOR ;and background color
movwf tmpi ;in tmpi
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB ;reset to background color
movlb 0
btfsc PORTB,6 ;mode hold ?
goto resume_irq ;if not, return
btfsc frame_num,5 ;blinking test
goto resume_irq ;if off return
movlw HOLD_COLOR ;store hold color
movwf tmpi+1 ;in tmpi+1
movfp tmpi,PORTB ;and display "hold" sign
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
goto resume_irq ;and return
; Generation of title2
scan_title2 movlb 0
movlw BKGTITLE_COLOR
movwf PORTB ;set background color
movlw TITLE_COLOR ;store title color
movwf tmpi+1 ;in tmpi+1
movlw BKGTITLE_COLOR ;and background color
movwf tmpi ;in tmpi
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB ;reset to background color
movlb 0
btfsc PORTB,6 ;mode hold ?
goto resume_irq ;if not, return
btfsc frame_num,5 ;blinking test
goto resume_irq ;if off return
movlw HOLD_COLOR ;store hold color
movwf tmpi+1 ;in tmpi+1
movfp tmpi,PORTB ;and display "hold" sign
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
goto resume_irq ;and return
; Generation of title3
scan_title3 movlb 0
movlw BKGTITLE_COLOR
movwf PORTB ;set background color
movlw TITLE_COLOR ;store title color
movwf tmpi+1 ;in tmpi+1
movlw BKGTITLE_COLOR ;and background color
movwf tmpi ;in tmpi
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB ;reset to background color
movlb 0
btfsc PORTB,6 ;mode hold ?
goto resume_irq ;if not, return
btfsc frame_num,5 ;blinking test
goto resume_irq ;if off return
movlw HOLD_COLOR ;store hold color
movwf tmpi+1 ;in tmpi+1
movfp tmpi,PORTB ;and display "hold" sign
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi+1,PORTB
movfp tmpi+1,PORTB
movfp tmpi+1,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
goto resume_irq ;and return
; Generation of title4
scan_title4 movlb 0
movlw BKGTITLE_COLOR
movwf PORTB ;set background color
movlw TITLE_COLOR ;store title color
movwf tmpi+1 ;in tmpi+1
movlw BKGTITLE_COLOR ;and background color
movwf tmpi ;in tmpi
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB ;reset to background color
movlb 0
btfsc PORTB,6 ;mode hold ?
goto resume_irq ;if not, return
btfsc frame_num,5 ;blinking test
goto resume_irq ;if off return
movlw HOLD_COLOR ;store hold color
movwf tmpi+1 ;in tmpi+1
movfp tmpi,PORTB ;and display "hold" sign
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
goto resume_irq ;and return
; Generation of title5
scan_title5 movlb 0
movlw BKGTITLE_COLOR
movwf PORTB ;set background color
movlw TITLE_COLOR ;store title color
movwf tmpi+1 ;in tmpi+1
movlw BKGTITLE_COLOR ;and background color
movwf tmpi ;in tmpi
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB ;reset to background color
movlb 0
btfsc PORTB,6 ;mode hold ?
goto resume_irq ;if not, return
btfsc frame_num,5 ;blinking test
goto resume_irq ;if off return
movlw HOLD_COLOR ;store hold color
movwf tmpi+1 ;in tmpi+1
movfp tmpi,PORTB ;and display "hold" sign
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
goto resume_irq ;and return
; Generation of title6
scan_title6 movlb 0
movlw BKGTITLE_COLOR
movwf PORTB ;set background color
movlw TITLE_COLOR ;store title color
movwf tmpi+1 ;in tmpi+1
movlw BKGTITLE_COLOR ;and background color
movwf tmpi ;in tmpi
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi,PORTB
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi+1,PORTB ;Pixel on
movfp tmpi,PORTB ;reset to background color
goto resume_irq ;and return
;----------------------------------------------------------------------------
; Soft generation of a vertical blanking line with scan_line reset
;
; Warning : all scan_X routines should execute in less than 169 instructions
;----------------------------------------------------------------------------
scan_rstscanl clrf scan_line,F ; reset scanline (will be incremented
clrf scan_line+1,F ; to 1 at next interrupt)
goto resume_irq
;============================================================================
; - END OF FILE -
;============================================================================
Oliver Antony Broad of Coaxial Power Systems Ltd Says:
Regarding the comments about AN542 it sounds to me as if the apnote simply lacked a 'window', and was doing exactly what a 'by the book' FFT should do. In an exercise once I was required to simulate a wien bridge and investigate the output purity, the software was also very sensitive to whether an integer number of cycles were processed. I was suprised at this as it was the evaluation version of a professional CAD package.
See:
Questions:
| file: /Techref/microchip/fft/picspect.htm, 130KB, , updated: 2018/8/27 18:42, local time: 2025/10/23 23:07,
216.73.216.53,10-2-207-162:LOG IN
|
| ©2025 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions? <A HREF="http://massmind.org/Techref/microchip/fft/picspect.htm"> PIC'SPECTRUM</A> |
| Did you find what you needed? |
Welcome to massmind.org! |
|
The Backwoods Guide to Computer Lingo |
.