
Implementing Virtual Peripheral Timers

Introduction
This application note presents programming techniques for creating multiple, programmable, 16-bit

timers/frequency outputs which take advantage of the SX's internal interrupt feature to allow background
operation of the timers as virtual peripherals. This example uses the Parallax demo board, taking advantage of
Parallax' SX demo software user interface and UART features to allow the SX to communicate simply and
directly with a personal computer via a serial RS232C port.

How the circuit and program work
The circuit is extremely simple, requiring one port pin configured as an output for each timer/frequency

output. In this implementation, the first timer delivers a square wave frequency output to the LED (port pin
RB.6), and uses a current limiting resistor in series with the LED to avoid drawing too much current1 from the
SX and burning out either it or the LED. The other timer controls the speaker (port pin RB.7), which is
connected in series with a 10uF capacitor that provides AC coupling and which acts as a high pass filter2 in
conjunction with the speaker's internal resistance. Essentially, this allows the speaker to function normally while
blocking direct current flow between the SX and ground that would burn out either the speaker or the SX.

For the LED timer, the interrupt code segment simply adds the timer value to a 16 bit storage
accumulator (using two 8 bit registers timer_accl + timer_acch) on each pass through the interrupt, and then
copies the high bit of the result (bit 7 of timer_acch) to the LED pin output. This technique allows the 16 bit
value stored in (timer_low + timer_high) to act as a frequency control (rather than a period or counter3 control)
for the square wave output at the LED pin. The code that outputs frequency on the speaker acts identically.

The period of the square wave output can be calculated by multiplying the number of interrupt passes per
timer cycle by the period between interrupt passes as follows:

periodint = mode * prescaler * RETIW value** / osc. frequency, where mode=1 (turbo) or =4 (normal)

So, for a crystal frequency of 50 MHz, in turbo mode, with a prescaler of 1, and with an RETIW value of 163,
the frequency4 of the signal at the timer output is:

foutput = 1 / periodtimer = (timer value / 216) / periodint

= timer value * 50 MHz / (216 * 1 * 1 * 163) = timer value * 0.214 Hz

1The 470Ω LED resistor limits current to the LED, which at 100% duty cycle draw a current of ILED = Vdd/R = 5V/220Ω = 23mA.
The values of this resistor may be adjusted to reduce/increase the overall brightness, though the 30 mA source/sink maximum port
current limit should be kept in mind.
2The low-frequency cut-off for this filter is far below audio levels.
3The code as designed is short and simple, though it lacks the high accuracy of a true 16-bit period counter which can provides
accurate timer/frequency output up to the resolution on the oscillator used (which for crystal oscillators is usually very high).
**The interrupt is triggered each time the RTCC rolls over (counts past 255 and restarts at 0). By loading the OPTION register with
the appropriate value, the RTCC count rate is set to some division of the oscillator frequency (in this case they are equal), which is
the external 50 MHz crystal in this case. At the close of the interrupt sequence, a pre-defined value is loaded into the W register
using the RETIW instruction which determines the period of the interrupt in RTCC cycles.
4Signal frequency is equal to the inverse of the period, i.e. f = 1 / period

The timer's frequency resolution varies depending on the value loaded into the timer, and decreases as the
timer value increases. If timing output resolution is a critical factor, all efforts should be made to make sure that
any code executed in the interrupt prior to the timer code section maintains a uniform execution rate at all times.
This can be done by placing the timer routine before any varying-execution-rate, state-dependent code (it should
always come before the UART, for instance), as in the current example.

