
© 1999 Scenix Semiconductor, Inc. All rights reserved. - 1 - www.scenix.com

Scenix™ and the Scenix logo are trademarks of Scenix Semiconductor, Inc.
All other trademarks mentioned in this document are property of their respec-
tive componies.

Application Note 25

Christopher Waters
December 1999
Patents Pending

HTTP Virtual Peripheral Implementation

1.0 Introduction
This application note describes an implementation of the
Hypertext Transfer Protocol (HTTP) for the Scenix SX
communications controller.

HTTP is the protocol used by the world-wide-web
(WWW). When a user navigates to a page with their web
browser an HTTP request is sent from the browser to the
HTTP server the web page resides on. The server
responds with the resource requested.

This Virtual Peripheral (VP) is an HTTP server implemen-
tation. This means that the SX can serve web pages,
images, Javaapplets, PDF documents, or any other
type of file. The WWW provides an easy to use, graphi-
cally oriented interface. It is a low resource method of
adding a complete graphical user interface (GUI) to the
SX. The beauty is that while the formatting commands
are sent from the SX, the actual layout and user interface
is done by the web browser.

The SX uses an external EEPROM to store the
resources that it serves. This way, the total size of the
resources is limited only by the size of the EEPROM.

The HTTP VP requires the transmission control protocol
(TCP) and TCP/IP stack described in application notes
AN27 (TCP Virtual peripheral Implementation) and AN23
(UDP/PPP Virtual Peripheral Implementation).

2.0 HTTP Example
This example shows how HTTP is normally used. The cli-
ent sends a request for the resource named index.html to
the SX HTTP server. The first word, GET, indicates that
this request is to get the resource. The SX only interprets
the first line of an HTTP request. Subsequent lines give
information that may be used by the web server to tailor
its response to the client.

The server reply packet is formulated on the SX. Since all
of the information, except the date, is constant the HTTP
reply header is stored in the EEPROM along with the
resource. After the header, a blank line indicates the start
of the resource. The data is not encoded in any special
way.

Client packet:
GET /index.html HTTP/1.0

Host: www.celsius.co.nz

Accept: image/gif, image/jpeg, */*

User-Agent: Lynx/2.6

Server reply:
HTTP/1.0 200 Document follows

Date: Fri, 9 Jul 1999 09:17:32 GMT

Server: SX-NET/1.0

Last-modified: Fri, 9 Jul 1999 09:15:11 GMT

Content-type: text/html

Content-length: 853

<HTML>…

3.0 Implementation
So that the data can be transferred in segments larger
than the available RAM, the HTTP implementation uses
the event driven architecture described in application
note AN23.

HTTP uses a uniform resource identifier (URI) to specify
the resource that should be returned. Normally the URI is
structured like a file path with directories specifying the
location and suffix indicating the file type. Implementing a
file system on the SX would require both significant code
space and the need to access the EEPROM to search for
the file name. The HTTP VP uses a clever hashing
scheme to avoid these problems while still allowing full
URIs to be used.

When a request is received an 8-bit hash is computed
over the URI (hash function is a simple 8-bit sum of the
characters in the string). The hash value is then multi-
plied by two and used as a lookup into a 512 byte table of
16-bit file offsets (called the index block). Hashing colli-
sions are ignored. Using this method avoids any need to
do string comparisons, or to store the URIs on the server
at all. When the lookup table is created the user is invited
to change the URIs of any resources which have a hash
collision. It is possible that a GET request might contain a

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 2 - www.scenix.com

HTTP Virtual Peripheral Implementation AN25

URI which does not exist on the web-server but which
hashes to the same value as a resource which does
exist. In this situation the incorrect resource will be
returned. However, since most GET requests are gener-
ated as the result of hyperlinks from other resources it is
very unlikely that an erroneous URI will be generated.
The problem of returning the wrong page is no different
than the possibility of a user typing a garbage URL into
their browser and having it bring up a real page (although
a hash collision does have a higher probability of occur-
rence). One limitation of the table lookup scheme is that
the web-server is limited to 256 resources. In the types of
applications the SX web-server is designed for this is not
a significant limitation.

4.0 Updating the Server EEPROM
Before the web-server can be used, the resources need
to be downloaded to the EEPROM. This requires pro-
gramming the SX with different firmware in the file
E2File.src. This program can communicate with a PC
over a serial port to accept a file to write into the
EEPROM. On the PC side the program E2Send.exe is
used to create the EEPROM file system. This program
will load a directory structure from disk and then down-
load it to the SX. The download uses the debug port on
the reference hardware.

The following steps should be followed:

1. Connect the debug port of the reference hardware to
COM2 on a PC.

2. Run the SX firmware in the file E2File.src
3. Create the web-server directory structure in the direc-

tory c:\temp\html\ on the PC. All files in this directory
will be downloaded to the SX's EEPROM.

4. Run the E2Send.exe program. Click 'Find Files' to load
the files from disk. If no file names appear in the box
then the directory c:\temp\html\ was not found. The
number to the left of each file is its hash. Check that no
two files have the same hash. If there are two files with
the same hash then rename one file and repeat this
step.

5. Click 'Build Data', then click 'Send Data'. A window
should appear saying 'Found SX…'. If no window ap-
pears then either the SX is not running the correct firm-
ware or the serial cable is not connected.

6. The download will proceed. When it is finished the EE-
PROM is updated with the new directory structure.

5.0 Dynamic Pages
To show changing information web-servers can normally
generate the HTML pages they serve on the fly. Creating
dynamic HTML in the SX web-server would be possible,
however each application has different requirements and
writing the HTML generation code for byte-at-time pro-
cessing can be difficult. Fortunately, for most web appli-
cations there is an alternative solution using JavaTM

applets. A JavaTM applet is a program written in JavaTM

which executes in a browser window. Since it executes
on the browser there are no limitations on memory usage
or program structure. The SX web-server can serve any
type of file, including JavaTM applets.

The other feature of dynamic web pages is the HTTP
POST method. This is the feature used by HTML forms
to send information back to the server. It would be possi-
ble to implement the HTTP POST method in the SX web-
server, but interpreting the information that is sent back,
which are usually strings, would be difficult in an SX.
JavaTM applets also provide a solution to this problem by
allowing pre-processing to take place on the browser.

To create dynamic pages with feedback an applet is cre-
ated which is stored on the SX web-server. When the
page containing the applet is viewer the browser fetches
the applet class file from the server and executes it. To
get information from the SX or to send back commands

Figure 3-1. File S ystem Implementation

Unused Space

EEPROM

Pointer to
Start of file

File 1

File 2

File 3

$000

$200

Index
Block

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 3 - www.scenix.com

AN25 HTTP Virtual Peripheral Implementation

the applet can open a TCP connection or send UDP
packets. These packets can be structured for easy inter-
pretation on the SX.

5.1 JAVA TM/Sprinkler Demo
As a demonstration of using a JavaTM applet a sprinkler
control program has been created. The web page, sprin-
kler.html, has an applet embedded in it. The applet cre-
ates a simple form on the web page with checkboxes to
turn different zones on or off and a menu to select the
length of time each zone is on. When the applet starts
executing it sends a UDP packet to the SX to get the cur-
rent sprinkler settings. When the user clicks the 'Update'
button another packet is sent containing the updated set-
tings.

For the demo to work several conditions need to be met:

· JavaTM must be enabled in the browser

· The SX must be listed by the DNS as 'sx'. (Done under
windows by adding an entry to the \windows\hosts or \
winnt\system32\hosts files.)

· The applet will only work when loaded from the SX.
Applets have the restriction that they can only communi-
cate with the same server that they were loaded from.

© 1999 Scenix Semiconductor, Inc. All rights reserved. - 4 - www.scenix.com

LIT#:SXL-AN25-04

For the latest contact and support information on SX devices, please visit the Scenix Semiconductor website at
www.scenix.com. The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road

Mountain View, CA 94043
Tel: (650) 210-1500

Fax: (650) 210-8715
Web Site: www.scenix.com

AN25 HTTP Virtual Peripheral Implementation

